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1 Introduction 

Vegetative filter strip (VFS) is an agricultural best management practice (BMP) recommended 
by U.S. Natural Resources Conservation Service to reduce pesticide pollution to surface water 
(USDA, 2000). VFS has been required or recommended for agricultural applications of some 
pesticide products including pyrethroids and neonicotinoids. For example, many bifenthrin 
product labels required a 10-ft VFS between the field edges and down gradient aquatic habitat 
(USEPA, 2008). For imidacloprid, applications within 10 ft of aquatic areas are prohibited to 
allow growth of a VFS. There is no standard procedure to evaluate pesticide fate and transport in 
a VFS under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) modeling 
framework. Therefore, the mitigation effectiveness of a VFS has not been considered in the 
recent ecological risk assessments (ERAs) on pyrethroids and imidacloprid by U.S. 
Environmental Protection Agency (USEPA, 2016b, a). For research and development purpose, 
quantitative assessment of VFS is usually implemented with the Vegetative Filter Strip Model 
(VFSMOD) (Muñoz-Carpena et al., 1999; Muñoz-Carpena and Parsons, 2004) for hydrological 
simulations and customized procedures for pesticide trapping effects (including adsorption, 
infiltration, and dissipation).  

Surface Water Protection Program (SWPP) of California Department of Pesticide Regulation 
(DPR) uses the Pesticide in Water Calculator (PWC) scenarios (USEPA, 2016d) for pesticide 
exposure assessment in agricultural areas of California (Luo, 2017a). In 2017, a semi-
mechanistic modeling approach for pesticide removal in a VFS was developed by SWPP, and 
integrated with PWC to build the first-generation PWC-VFS modeling system (Luo, 2017b). 
While the hydrology is mechanistically simulated by VFSMOD, pesticide fate and transport 
processes in a VFS were modeled with a semi-mechanistic method with conservative 
assumptions. As a part of the modeling efforts for conservation practices in agricultural areas of 
California, the approach was evaluated with bifenthrin as a test agent (Luo, 2019). The 
limitations were also reported, mainly related to the separate and sequential simulations of the 
actually simultaneous processes of pesticide trapping and extraction. In this study, a fully 
mechanistic approach is developed with physically-based modeling on the runoff-soil exchange 
of pesticide in a VFS. The PWC-VFS modeling system is updated with the new approach and 

 



2 
 

expected to predict pesticide removal efficiencies by a VFS with a wide range of chemical and 
soil properties, and facilitate continuous modeling for long-term mitigation effects under the 
PWC scenarios. 

The next section reviews the modeling studies in the literature on hydrological and pesticide 
simulations in a VFS, and briefly summarizes the previous development by SWPP. Section 3 
presents the new model development. Case studies with the new approach are demonstrated in 
Section 4 with selected pesticides (bifenthrin, chlorpyrifos, imidacloprid, and permethrin) under 
14 PWC scenarios in California. 

2 Literature review 

2.1 Single-event pesticide trapping in a VFS 

VFSMOD was originally developed to quantify the trapping effects for water flow (∆Q) and 
suspended sediment (∆E) during a single runoff event through a VFS (Muñoz-Carpena et al., 
1999; Muñoz-Carpena and Parsons, 2004). The most influencing input variables are incoming 
runoff (Qi, m3), incoming sediment load (Ei, kg), and saturated hydraulic conductivity (Ksat, m/s). 
The three variables together explain the majority of the variability (R2= 0.76 for runoff and 0.64 
for sediment, N= 1650) on the measured VFS performance (White and Arnold, 2009). In 
addition to field measurements, soil models for runoff generation and soil erosion are used to 
simulate the drainage area (an agricultural field) upstream to the VFS, and generate the incoming 
loads of water, sediment, and chemicals (e.g., nutrients and pesticides) for VFSMOD. For 
example, the distribution package of VFSMOD includes a companion utility, Unit Hydrograph 
(UH), that creates synthetic model inputs for the upslope source area based on the National 
Resource Conservation Service design storm for a given location and soil type. Previous studies 
have demonstrated the successful coupling with other models, such as Soil Water Assessment 
Tool (SWAT) and Pesticide Root-Zone Model (PRZM). 

Early prediction of pesticide trapping by a VFS was based on regression relationships derived 
from experimental data. The simplest relationship only uses one independent variable of VFS 
width (WB, m, in the flow direction through the filter) to predict the pesticide reduction (∆P) 
through a VFS (Webster and Shaw, 1996; Cole et al., 1997). This equation was incorporated into 
SWAT version 2005 (Neitsch et al., 2005), 

∆𝑃𝑃 = 0.367 × 𝑊𝑊𝐵𝐵
0.2967 (1) 

Taking a 10-ft VFS as an example, the removal efficiency is calculated as 51% for any pesticide 
regardless of physicochemical properties and field conditions. Therefore, it’s more appropriate 
for relative comparison on the mitigation effects with various proposed filter sizes. This equation 
was used to model VFS effectiveness to reduce organophosphate pesticides in the Central Valley 
(Luo and Zhang, 2009; Zhang and Zhang, 2011). 

Pesticide reduction through a VFS is related to the reductions of runoff and sediment. Therefore, 
the prediction of ∆P is refined by introducing ∆Q and ∆E as independent variables and 
considering the physicochemical properties of the pesticide of interest. For example, the 
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following regression equation was developed by Sabbagh et al. (2009) with 47 field 
measurements, 

ΔP = f (ΔQ, ΔE, Fph, %C) 

=24.79 + 0.54ΔQ + 0.52ΔE – 2.42 ln(Fph + 1) – 0.89%C (2) 

where Fph (-) is the ratio of incoming pesticide mass in the dissolved phase relative to that sorbed 
to sediment, and %C (-) is the percent clay content. Coupled modeling by VFSMOD and Eq. (2) 
were compared with three other models (APEX, PRZM_BUFF, and PEMM) and determined to 
best match the observed pesticide reductions for four chemicals with KOC ranging from 54 to 
12,500 L/kg (Winchell et al., 2011). In 2019, the regression equation was re-calibrated with an 
enlarged experimental dataset (N=244) (Reichenberger et al., 2019), 

ΔP = -11.5142 + 0.5949ΔQ + 0.4892ΔE – 0.3753 ln(Fph + 1) + 0.2039%C (3) 

With a similar formulation, another regression equation was proposed by Chen et al. (2016), 

ΔP = f (ΔQ, ΔE, Cat, %C) (4) 

where “Cat” is a categorical variable (Cat= 1 for KOC> 9000 L/kg or Cat= 0 otherwise). Both 
“Fph” in Eq. (2) and “Cat” in Eq. (4) represent the effects of pesticide phase distribution on the 
prediction of removal efficiency by a VFS. Limitations are observed in both regression 
equations. First, Kd would be a better parameter than KOC in Eq. (4) for indicating pesticide 
adsorption, given the wide range of organic carbon contents in the soil: 0.008-0.0406 in the 
experimental data or 0.0029-0.0348 in the PWC scenarios for California. For the same pesticide, 
its Kd value may vary up to 12X (=0.0348/0.0029) over different soil settings. Second, since the 
field measurements only reported “total” masses of pesticide (in dissolved and sorbed phases) in 
the influent and effluent flows, the instantaneous equilibrium was assumed for calculating Fph 
value in in Eq. (2). Consequently, Fph is estimated as a function of incoming sediment 
concentration (Ein/Qin, with Ein and Qin denoting the incoming sediment loading and runoff 
volume, respectively) (Sabbagh et al., 2009), not necessarily reflecting the actual phase 
distribution of the incoming pesticide masses, 

𝐹𝐹𝑝𝑝ℎ = 𝑄𝑄in
𝐾𝐾𝑑𝑑𝐸𝐸in

 (5)  

Most of the soil models separately predict pesticide yields in dissolved and sorbed phases, which 
can be used to build a physically based modeling approach for pesticide trapping in a VFS. Since 
SWAT version 2009 (Neitsch et al., 2009), a semi-mechanistic method was developed to predict 
the reduction of pesticide in water runoff or suspended sediment. In this method, infiltration and 
sedimentation are assumed the only relevant mechanisms of pesticide trapping in a VFS, 





∆=∆
∆=∆
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QPd

p  (6) 
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where ΔPd and ΔPp are the removal efficiency for pesticides in dissolved and sorbed phases, 
respectively. The same assumption and equations were adopted in SWPP’s previous study (Luo, 
2017b). Compared to regression equations (2)-(4), the semi-mechanistic method is independent 
on field measurements, and thus can be applied to the field conditions not covered by available 
experimental data. The empirical, Eqs. (2)-(4), and mechanistic, Eq. (6), approaches were 
evaluated with an extended single-event field database (Reichenberger et al., 2019). The authors 
confirmed the general performance ranking for ∆P prediction: Eq. (6) > (4) > (2), and 
recommended the mechanistic approach as a viable alternative to the regression equations for 
regulatory modeling. 

Another advantage for the mechanistic approach is its convenience for further model 
development such as the long-term exposure analysis (see the next Section). The mechanistic 
approach considers individual physical processes of infiltration and sedimentation, and can be 
incorporated with equations for other processes such as extraction of previously trapped pesticide 
in a VFS. Pesticide extraction (also called uptake or pickup in the literature) includes runoff 
extraction for dissolved mass in the soil pore water and erosion extraction for sorbed mass by 
particle resuspension. The regression equations represent the aggregated mitigation effects by 
comparing the measured pesticide loads in influent and effluent flows. Since pesticide extraction 
in a VFS is not measurable, regression approaches are essentially not appropriate for continuous 
modeling of pesticide in a VFS.  

2.2 Continuous modeling of pesticide in a VFS 

Continuous modeling of pesticide simulates long-term mitigation effects on pesticide in multiple, 
consecutive runoff events through a VFS. Continuous modeling of VFS is usually implemented 
by coupling VFSMOD (for a VFS) with PRZM (for an agricultural field). Daily results of edge-
of-field loads (Qi for water, Ei for sediment, and Pi for pesticide) predicted by PRZM are used to 
drive the hydrological and pesticide simulations in a VFS. Early studies simply adjusted PRZM-
predicted fluxes with VFSMOD modeling (for water and sediment) and the regression model in 
Eq. (2) (for pesticide) (Sabbagh et al., 2010; Sabbagh et al., 2013) (Figure 1). These studies 
assumed that pesticide trapped in a VFS was immediately removed from the simulation domain. 
In other words, the vegetative filter is always new, uncontaminated for each runoff event. 
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Figure 1. Early modeling efforts to link VFSMOD and PRZM for pesticide mitigation in a VFS 
(Qi, Ei, and Pi are incoming loads to a VFS predicted by PRZM for runoff, suspended sediment, 
and pesticides, respectively. Qo, Eo, and Po are the effluent loads) 

Once trapped in a VFS, pesticides are subject to fate and transport processes including 
partitioning, degradation, and percolation. In addition, the pesticide residues may re-enter the 
overland flow in the next runoff event by runoff extraction and sediment resuspension. Modeling 
approaches for mass balance and degradation processes for pesticide in a VFS were first 
developed by the VFSMOD team (Muñoz-Carpena, 2014; Muñoz-Carpena et al., 2015). The key 
variable is pesticide mass retained in the mixing soil layer of a VFS. The mixing layer depth is 
recommended to be 2 cm for consistency with that in PRZM (USEPA, 2006a; Muñoz-Carpena, 
2014). During a dry period between two runoff events, retained pesticide in the mixing layer may 
be lost by degradation and percolation. In the next runoff event, it’s assumed that all retained 
pesticide masses will be transported from the mixing layer, and added to the incoming pesticide 
mass (highlighted as a red arrow connector in Figure 2) (Muñoz-Carpena et al., 2015). This is 
essentially an empirical method by prescribing the extracted pesticide masses without simulating 
the associated physical processes. 

 

Figure 2. Current modeling approach for continuous modeling of pesticide in a VFS  

The modeling approach in Figure 2 was implemented in SWPP’s previous work (Luo, 2017b), 
but with the pesticide trapping estimation by the semi-mechanistic method, Eq. (6), and upgrade 
of USEPA modeling framework from PRZM3-EXAMS to PWC (PRZM5-VVWM). Later, the 
semi-mechanistic trapping equation and the PWC framework were also evaluated by the 
VFSMOD team (Muñoz-Carpena et al., 2019). The differences between the two studies (Luo, 
2017b; Muñoz-Carpena et al., 2019) are mainly observed for the pre-processing of PRZM-
predicted pesticide load (Pi) and the assumption on the extraction of retained pesticides to the 
incoming flow in the next runoff event (Figure 2). Specifically, In Muñoz-Carpena et al. (2019), 
Eq. (6) was modified by assuming instantaneous equilibrium for pesticide in the incoming flow 
between dissolved and sorbed phases before trapping by a VFS, 

∆𝑃𝑃 = 𝑄𝑄𝑖𝑖∆𝑄𝑄+𝐾𝐾𝑑𝑑𝐸𝐸𝑖𝑖∆𝐸𝐸
𝑄𝑄𝑖𝑖+𝐾𝐾𝑑𝑑𝐸𝐸𝑖𝑖

 (7) 
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In addition, both approaches used an empirical method for pesticide extraction, but with different 
assumed pesticide amounts from the mixing layer: “100% [dissolved]” (Luo, 2017b) vs. “100% 
[dissolved] + 100% [sorbed]” (Muñoz-Carpena et al., 2019). 

2.3 Summary of previous modeling approaches for VFS 

A modeling approach for pesticide removal in a VFS consists of two modeling components: 
hydrological (water and sediment) and pesticide simulations. When developing and presenting a 
VFS model, therefore, it’s important to specify each of the components. Summarized in Table 1 
are existing modeling studies for continuous simulation with their corresponding approaches for 
hydrology and pesticide. For comparison, the proposed approach in this study is also listed. Even 
with the same mechanistic hydrological simulation by VFSMOD, different modeling approaches 
can be implemented for pesticide. 

Table 1. Modeling approaches for pesticide removal in a VFS 
VFS modeling approach in… Hydrological simulation Pesticide simulation 
Early version SWAT [1] NA Empirical method, Eq. (1) 
SWAT 2009 and after Empirical  Semi-mechanistic, Eq. (6) 
Sabbagh et al. (2009) [2] Mechanistic (VFSMOD) Empirical, Eq. (2) 
Luo (2017b) Mechanistic (VFSMOD) Semi-mechanistic, Eq. (6) 
Muñoz-Carpena et al. (2019) Mechanistic (VFSMOD) Empirical, Eqs. (2)-(4), and 

semi-mechanistic, Eq. (7) 
This study Mechanistic (VFSMOD) Mechanistic (this report) 

Notes: [1] SWAT = Soil Water Assessment Tool. [2] The regression equation in (2) has been 
incorporated in the current VFSMOD. Therefore, the modeling approach with “VFSMOD for 
hydrology) and Eq. (2) for pesticide” has been widely used in VFS modeling studies during the 
last decade. Here only shows the initial development by Sabbagh et al. (2009). See a full citation 
list in the VFSMOD website (https://abe.ufl.edu/faculty/carpena/vfsmod/citations.shtml). 

There are limitations in the existing approaches for pesticide (i.e., regression equations and semi-
mechanistic method). First, the field data used to build a regression equation are generally 
measured for water soluble pesticides.  Taking the extended field database (Reichenberger et al., 
2019) as an example, the median Kd is 5.2 L/kg and the 90th percentile is 110 L/kg over the 244 
data points (Figure 3). There are only 17 data points, or 7% of the database, associated with Kd > 
200 L/kg, and 2 data points with Kd > 1000 L/kg (2%). Therefore, the resulting regression 
equation would be more appropriate to pesticides with low or moderate adsorption with Kd< 200 
L/kg, but not suitable to hydrophobic compounds such as pyrethroids. 
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Figure 3. Histogram of pesticide Kd values in the field measurements used to build the regression 
equation for pesticide removal efficiency in a VFS, total N= 244 

Secondly, in all studies with regression equation and some studies with semi-mechanistic 
method, instantaneous equilibrium was assumed for incoming pesticide masses (i.e., edge-of-
field pesticide fluxes) in dissolved and sorbed phases. For example, with equilibrium 
assumption, Eq. (5) is used to estimate pesticide mass ratio between dissolved and sorbed phases. 
Otherwise, without this assumption, the phase distribution factor would be expressed as, 

𝐹𝐹𝑝𝑝ℎ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅

 (8) 

where RFLX and EFLX are edge-of-field pesticides fluxes in dissolved and sorbed phases, 
respectively, by following the PRZM terminology. Similarly, Eq. (7) is an equilibrium version of 
the semi-mechanistic method, Eq. (6), used by Reichenberger et al. (2019). With equilibrium 
assumption, pesticide removal efficiency would be reported as the aggregated reduction (ΔP) as 
in Eqs. (2) and (5), rather than the reductions for individual phases (ΔPd and ΔPp). Note that the 
VFS modeling in SWAT 2009 (and later versions) and in Luo (2017b, 2019) (Table 1), 
instantaneous equilibrium for incoming pesticide was not assumed, so pesticide reduction was 
calculated for each phase as an intermediate modeling result. 

Results of field measurements and PRZM model predictions indicate that the edge-of-field 
pesticide masses are not necessarily in equilibrium. The prediction of pesticide removal through 
a VFS is sensitive to the phase distribution of the incoming pesticide runoff. A case study is 
developed to demonstrate the effects of the equilibrium assumption on the predicted phase 
distribution. Bifenthrin and the PWC scenario for “CA almond” are used in the case study, and 
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all input data are taken from the ecological risk assessment by USEPA for pyrethroids (USEPA, 
2016a). PRZM results are extracted for edge-of-field fluxes of water, suspended solids, and 
pesticide in each phase. By assuming equilibrium, the phase distribution factor (Fph) is calculated 
as 4.4 with Eq. (5). Since Fph is the ratio of pesticide masses between dissolved and sorbed 
phase, the resulting value suggests that majority (4.4/(4.4+1)=81%) of the edge-of-field pesticide 
masses are associated with water runoff. For a hydrophobic chemical such as bifenthrin, this Fph 
value may not be realistic. If an instantaneous equilibrium is not assumed, Fph is calculated as 
0.22 with Eq. (8), indicating 18% (=0.22/(0.2+1)) of the incoming pesticide in dissolved phase 
and 82% particle-bound.  

Finally, the existing modeling approaches for pesticide removal in a VFS are irrelevant to the 
incoming pesticide loadings. Specifically, regression equations, see Eqs. (2) and (4), are only 
established as a function of incoming flow (Qi), sediment (Ei), and their reductions (ΔQ and 
ΔE) , while the semi-mechanistic method is only sensitive to ΔQ and ΔE in Eq. (6). None of the 
equations considered incoming pesticide masses as input variables. 

3 Model development 

3.1 Physically based modeling for pesticide trapping and extraction in a VFS 

As summarized in the previous section, VFSMOD provides hydrological simulations for all 
PWC-VFS modeling systems (or similar systems with other versions of USEPA framework), 
while pesticide simulations in a VFS have been developed independently by different research 
groups during the last decade. One issue in the current approach for continuous modeling of VFS 
(Figure 2) is the separated simulations of trapping (from runoff to VFS) and extraction (from 
VFS to runoff) of pesticides. The two processes actually occur simultaneously during a runoff 
event (Figure 4). A new modeling approach is proposed here to formulate transport processes of 
pesticide in a VFS.  

 

Figure 4. Interactions between the mixing soil layer of a VFS and the incoming (a) water flow 
and (b) suspended sediment. Qin includes both runoff from the drainage field and precipitation 
on the VFS 

For dissolved pesticide in the mixing layer, the mass balance aggregated during the runoff event 
is expressed as,  
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∆(𝑉𝑉𝑉𝑉) = 𝑄𝑄inf𝑉𝑉i − 𝑄𝑄subC − 𝑄𝑄thrC (9) 

where V (m3) is the water volume in the mixing layer of a VFS, C and Ci (kg/m3) are the 
dissolved pesticide concentrations in the mixing layer and in the incoming flow, respectively, 
Qinf, Qsub, and Qthr (m3) are the infiltration from runoff to VFS (predicted by VFSMOD), 
percolation to subsurface, and lateral flow interacting with the mixing layer, respectively. 
Pesticide dispersion (𝐷𝐷 𝜕𝜕2𝐶𝐶

𝜕𝜕𝑧𝑧2
) is not included since the dispersion coefficient (D) is set to zero in 

the PWC scenarios (Young, 2016b). The concept of Qthr is taken from PRZM, which considers 
that only a portion of runoff interacts with the soil mixing layer and extracts dissolved pesticide 
out of soil matrix (Young, 2016b). The ratio fthr= Qthr/Qi is named as runoff interacting fraction 
by following the PRZM terminology. This fraction, also called uptake fraction or pickup fraction 
in the literature, could be implemented either by partial runoff or by partial concentration, and 
widely used in runoff and transport models (Leonard et al., 1987; Smith, 1992; Carsel et al., 
1998; Ahuja et al., 2000). 

The mass balance for sorbed pesticide is, 

𝑀𝑀∆𝑆𝑆 = 𝐸𝐸dep𝑆𝑆i − 𝐸𝐸res𝑆𝑆 (10) 

where M (kg) is the soil mass in the mixing layer, S and Si (kg/kg[soil]) are the sorbed pesticide 
concentrations in the mixing layer and in the incoming flow, respectively, Edep (kg[soil]) is the 
sedimentation of the suspended solids, and Eres (kg[soil]) is the resuspension. Equations (9) and 
(10) are combined for overall mass balance of pesticide in the mixing layer, and organized as, 

∆𝑉𝑉𝑉𝑉 + 𝑀𝑀∆𝑆𝑆 = (𝑄𝑄inf + 𝑄𝑄thr)𝑉𝑉i − (𝑄𝑄sub + 𝑄𝑄thr)C + 𝐸𝐸dep𝑆𝑆i − 𝐸𝐸resS (11) 

Or, 

𝑉𝑉𝑉𝑉 + 𝑀𝑀𝑆𝑆 − 𝑃𝑃0 = (𝑄𝑄inf + 𝑄𝑄thr)𝑉𝑉i − (𝑄𝑄sub + 𝑄𝑄thr)C + 𝐸𝐸dep𝑆𝑆i − 𝐸𝐸res𝑆𝑆 (12) 

where P0=  (V0C0+MS0) @ t=0 is the pesticide mass in the mixing layer immediately before a 
runoff event. The above equation is re-arranged as, 

(𝑉𝑉 + 𝑄𝑄sub + 𝑄𝑄thr)𝑉𝑉 + (𝑀𝑀 + 𝐸𝐸res)𝑆𝑆 = (𝑄𝑄inf + 𝑄𝑄thr)𝑉𝑉i + 𝐸𝐸dep𝑆𝑆i + 𝑃𝑃0 (13) 

It is assumed that the infiltrated water has tried to saturate the mixing layer before loss to 
subsurface (Muñoz-Carpena et al., 2015). So, at the end of the runoff event,  

𝑉𝑉 = 𝑄𝑄inf − 𝑄𝑄sub + 𝑉𝑉0 (14) 

VFSMOD predicts the total effective sedimentation, ∆E=(Edep-Eres)/Ei, but not its individual 
components. The mass balance for suspended sediment gives, 

𝐸𝐸dep = 𝐸𝐸i∆𝐸𝐸 + 𝐸𝐸res (15) 

Combining (14) and (15) into (13), 
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(𝑉𝑉0 + 𝑄𝑄inf + 𝑄𝑄thr)𝑉𝑉 + (𝑀𝑀 + 𝐸𝐸res)𝑆𝑆 = (𝑄𝑄inf + 𝑄𝑄thr)𝑉𝑉i + (𝐸𝐸i∆𝐸𝐸 + 𝐸𝐸res)𝑆𝑆i + 𝑃𝑃0 (16) 

The concentrations are solved as, 
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Previous modeling studies predicted dissolved concentrations of pesticide above the 
corresponding water solubility (Csol), especially for hydrophobic compounds. In the ERAs for 
pyrethroids (USEPA, 2016a), for example, predicted dissolved concentrations exceeded the limit 
of solubility for bifenthrin, deltamethrin, fenpropathrin in various use patterns. If C> Csol from 
Eq. (17), the concentration of dissolved pesticide is set as Csol, and that of sorbed pesticide is 
recalculated from Eq. (16), 
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Effluent pesticide masses (Pod for dissolved phase and Pop for sorbed phase, kg) can be calculated 
as, 
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where Qo and Eo are water and sediment leaving the filter. By definition, Qo= (1-∆Q)Qin and Eo= 
(1-∆E)Ei. If there is pesticide in the incoming flow (i.e., Ci> 0 and Si> 0), the trapping 
efficiencies for pesticide in dissolved and sorbed phases can be calculated as, 
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where fthr= Qthr/Qi, or the interacting fraction for runoff extraction of pesticide from the mixing 
layer, with a range of 0 to (1-∆Q). For agricultural fields, the default modeling settings in PWC 
version 1.52 use fthr= 0.266 (Young, 2016a). By calibration with extended field measurements, a 
more recent study by the PRZM developers suggested an even smaller fraction of 0.19 (Young 
and Fry, 2017). With higher Manning’s roughness coefficient and water-plant interaction, a VFS 
is associated with a higher interacting fraction than agricultural fields. Therefore, a fthr of 0.4 
(more accurately min(0.4, 1-∆Q)) is tested in this study as an initial value. Generally, higher fthr 
results in higher pesticide removal efficiency, and the effects of fthr on model predictions are also 
evaluated. 
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Similarly, fres= Eres/Ei, denoting the ratio between suspended sediment and the incoming 
sediment, with a range of 0 to (1-∆E). Results of previous field and modeling studies suggested 
that VFS is very efficient for sediment removal (i.e., large value of ∆E). Therefore, fres would be 
a small value, e.g., up to 0.01 for “almond” scenario or up to 0.20 for “lettuce” scenario (Luo, 
2019). This study will run the VFS model with both the minimum (fres=0 or no resuspension) and 
maximum (fres=1-∆E) value, and investigate the effect of fres on the prediction of ∆P.  

By comparing the equations in (6) and (20), the new modeling approach with physically-based 
modeling for water-soil exchange of pesticide provides a more general description and prediction 
of pesticide removal efficiency in a VFS. The previous simplified mechanistic method, ∆Pd= ∆Q 
and ∆Pp= ∆E, only reflects a subset of the general conditions with special cases such as fthr= 0, 
fres= 0, Ci= C, and/or Si= S. The new approach also explicitly models pesticide mass gain from a 
filter, indicated by negative trapping efficiencies of pesticide (∆Pd and/or ∆Pp) even with positive 
∆Q and ∆E values. In this case, the previously contaminated VFS acts as a source by transporting 
pesticide residues back to the overlying flow. 

Finally, the total pesticide reduction is calculated as, 

∆𝑃𝑃 = 1 − 𝑃𝑃od+𝑃𝑃op

𝑃𝑃id+𝑃𝑃ip
 (21) 

Note that ∆P is calculated for reporting purpose only, but not used in the model simulation. 

3.2 Simulation design for continuous modeling 

Equations (18)-(21) establish pesticide transport modeling in a VFS during a runoff event. At the 
end of the event, the pesticide mass retained in the VFS mixing layer is updated as, 

𝑃𝑃m = 𝑉𝑉𝑉𝑉 + 𝑀𝑀𝑆𝑆 (22) 

Pm is subject to further adjustment by pesticide fate and transport processes during a dry period. 
Here, a dry period is defined between two runoff events predicted by PRZM. Note that it is 
possible that a small amount of precipitation (on both the field and VFS) or irrigation (on the 
field) is observed during a dry period, but does not generate surface runoff.  

The first-order kinetics with the aerobic soil metabolism half-life of the pesticide is used for 
estimating degradation in the mixing layer. The time period for calculating degradation is 
extended to include the runoff event before the dry period. Therefore, the degradation losses of 
pesticide not considered during the runoff event, Eq. (16), can be simulated together with the 
losses during the dry period. Finally, the updated Pm immediately before the next runoff event, 
Pm at t=0 or P0, is used as an input variable in the equations (18) or (19) for simulating pesticide 
transport during the next runoff. 

Soil moisture during a dry period is assumed as the same value in the agricultural field predicted 
by PRZM (Muñoz-Carpena et al., 2015). Therefore, the effect of precipitation on the VFS soil 
moisture during a dry period is actually considered. This assumption may overestimate soil 
moistures in VFS soils, due to some irrigation events (but not generating surface runoff) over the 
fields. To simplify the hydrological simulation, it’s assumed that there is no percolation from the 
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VFS mixing layer during a dry period. For the retained pesticide mass in the mixing layer, this 
suggests a conservative estimation by minimizing the loss to subsurface.  

3.3 Input data 

The PWC-VFS system has similar data requirements as PWC modeling, including modeling 
scenarios, pesticide physicochemical properties, and pesticide application data. It’s assumed that 
the top soil layer of a VFS has the same properties as that of the treated field. PWC scenarios 
provides most of the required soil input data, including slope (SLP), bulk density (BD), field 
capacity (FC) wilting point (WP), and organic carbon content. Additional soil properties required 
by VFSMOD are saturated hydraulic conductivity (VKS), average suction at wetting front 
(SAV), and contents of clay (CLAY) and sand (SAND). Indexed by soil texture class, 
representative values for those parameters were available in the literature (Maidment, 1993; 
Miller and White, 1998) (Table 2). 

Table 2. Representative soil properties by textural classification 
Class 
No. 

USDA textural 
classification 

Field 
capacity (-) 

Wilting 
point (-) 

VKS 
(cm/h) 

SAV 
(cm) 

SAND 
(%) 

CLAY 
(%) 

1 Sand 0.091 0.033 23.56 4.95 92 3 
2 Loamy sand 0.125 0.055 5.98 6.13 82 6 
3 Sandy loam 0.207 0.095 2.18 11.01 58 10 
4 Silt loam 0.33 0.133 0.68 16.68 17 13 
5 Silt - - - - 10 5 
6 Loam 0.27 0.117 1.32 8.89 43 18 
7 Sandy clay loam 0.255 0.148 0.30 21.85 58 27 
8 Silty clay loam 0.366 0.208 0.20 27.30 10 34 
9 Clay loam 0.318 0.197 0.20 20.88 32 34 
10 Sandy clay 0.339 0.239 0.12 23.90 52 42 
11 Silty clay 0.387 0.250 0.10 29.22 6 47 
12 Clay 0.396 0.272 0.06 31.63 22 58 

Notes: representative values for saturated hydraulic conductivity (VKS), average suction at 
wetting front (SAV) are taken from Maidment (1993), which did not report data for soil class #5 
(silt). Soil class # and contents of clay (CLAY) and sand (SAND) are retrieved from CONUS-
SOIL database (Miller and White, 1998). 

Values of field capacity and wilting point in Table 2 are not used in the VFS modeling, but to 
help determine the relevant soil class for a PWC scenario (Table 3). For some scenarios, the 
corresponding soil classes are specified in their metadata files (available with early versions of 
PRZM). If there is no sufficient information, otherwise, the field capacity (FC) and wilting point 
(WP) in the scenario are compared to the representative values in Table 2 to determine the soil 
class. In the “alfalfa” scenario for California (“CAalfalfa_WirrigOP”), for example, the reported 
FC and WP are 0.42 and 0.36, respectively. Based on the minimum root-mean-square error, the 
scenario (CA alfalfa) is assigned with soil class #12 (clay). This is also confirmed by the 
scenario metadata, which mentioned that the benchmark soil was set as Sacramento Clay. With a 
soil class assigned, the representative values for VKS, SAV, SAND, and CLAY can be obtained 
from Table 2 and used in VFS modeling. 
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Table 3. Soil properties of the top soil layer for PWC scenarios in California 
Crop Scenario SLP 

(%) 
BD 
(kg/L) 

FC (-) WP (-) OC 
(%) 

Soil type [1] 

Alfalfa CAalfalfa_WirrigOP 2 1.43 0.42 0.36 1.77 Sacramento 
Clay 

Almond Caalmond_WirrigSTD 2 1.55 0.22 0.1 0.81 Manteca fine 
sandy loam 

Citrus CAcitrus_WirrigSTD 5 1.59 0.16 0.06 0.46 Exeter loam 
Cole crop CAColeCropRLF_V2 1 1.5 0.334 0.219 1.74 Marimel Silty 

Clay Loam 
Corn CAcornOP 4.5 1.55 0.223 0.083 0.58 Madera loam 
Cotton CAcotton_WirrigSTD 2.5 1.45 0.36 0.22 0.29 Twisselman 

clay 
Fruit CAfruit_WirrigSTD 2 1.7 0.218 0.078 0.58 Exeter loam 
Grape CAgrapes_WirrigSTD 2 1.84 0.21 0.1 0.71 San Joaquin 

loam 
Lettuce CAlettuceSTD 6 1.575 0.295 0.17 0.725 Clay loam [2] 
Row crop CARowCropRLF_V2 1 1.35 0.283 0.148 1.74 Mocho silt 

loams 
Strawberry CAStrawberry-

noplasticRLF_V2 
1.5 1.65 0.12 0.039 0.58 Oceano series 

Sugarbeet CAsugarbeet_WirrigOP 2 1.4 0.359 0.255 3.48 Exeter loam 
Tomato CAtomato_WirrigSTD 0.25 1.3 0.38 0.25 0.95 Stockton Clay 
Wheat CAWheatRLF_V2 4.5 1.55 0.282 0.133 0.44 San Joaquin 

series (loam) 

Note: [1] Soil type is extracted from the scenario metadata provided by USEPA. [2] No metadata 
for California lettuce scenario. Soil type is determined as clay loam based on the provided soil 
properties. 

PWC runs at a daily time step, while the hydrological simulation in a VFS (VFSMOD) is a 
runoff event-based model. Therefore, the daily runoff entering a VFS is assumed to be one 
aggregated event. The same assumption is applied to the runoff generation in many surface water 
models at daily time step, such as SWAT (USDA, 2016). The aggregated daily runoff is 
characterized by total runoff volume (predicted by PRZM), duration, and runoff distribution over 
the duration. For rainfall-induced runoff, its duration is calculated as (rainfall volume)/(rainfall 
intensity). The rainfall volume for each day is retrieved from weather data associated with crop 
scenarios (USEPA, 2016c), while the rainfall intensity can be determined from the Precipitation 
Frequency Data Server by the National Oceanic and Atmospheric Administration (NOAA, 
2019). For example, the rainfall intensity for the Sacramento area is 2 mm/hour (for a 24-hour 
period, 1-year recurrence interval). For irrigation tail water, the duration is calculated by 
(irrigation volume)/(irrigation rate), where the volume is predicted by PRZM and the rate is 
predefined in the crop scenarios (USEPA, 2016c). It’s noted that the irrigation rate in the PWC 
scenarios are significantly lower than that suggested in the previous version for most of the crops 
(USEPA, 2006b). Triangular hydrography (with peak flow rate = 2× average rate, and peak time 
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= (runoff duration)/2.67) is used for distributing the total runoff over its duration (Muñoz-
Carpena, 2013). 

4 Case studies 

4.1 Modeling settings 

The newly developed model is used to simulate pesticide removal efficiency by a 10-ft VFS 
under PWC scenarios, the label-required or recommended size for agricultural applications of 
pyrethroids and neonicotinoids. Compared to previous studies (Luo, 2017b, 2019), the 
improvement in this study is mainly on the modeling approach for pesticide simulations in a 
VFS. Therefore, the case studies only characterizes the mitigation effects by a VFS, while the 
relative change of estimated environmental concentrations (EECs) in a receiving water is not 
presented. Note that, according to the previous results (Luo, 2017b, 2019), the EEC reduction is 
usually significantly lower than the removal efficiency by a VFS, mainly because the 
contribution of pesticide masses by spray drift to receiving water would not be mitigated by a 
VFS. 

Four pesticides are selected in this study: bifenthrin, chlorpyrifos, imidacloprid, and permethrin. 
The pesticides represent a wide range of chemical properties especially the KOC values in the 
order of 102 (imidacloprid), 103 (chlorpyrifos), 104 (permethrin), and 105 (bifenthrin). The 
modeled pesticides are associated with high use amounts and high detections in surface water of 
California. Their physiochemical properties (Table 4) have been summarized in previous studies 
based on those used in ERAs by USEPA for bifenthrin (USEPA, 2010, 2016a), chlorpyrifos 
(USEPA, 2017), imidacloprid (USEPA, 2016b), and permethrin (USEPA, 2011, 2016a). 

Table 4. Physiochemical properties of the selected pesticides 
Property Bifenthrin  Chlorpyrifos Imidacloprid Permethrin 
Molecular weight (g/mol) 422.9 350.57 255.7 391.3 
Vapor pressure (torr) 1.8e-7 2.44e-5 1.5E-9 1.48e-8 
Water solubility (mg/L) 1.4e-5 1.39 610 5.5e-3 
Aqueous photolysis HL (day) 49 52.65 0.2 94 
Soil HL (day) 169.2 86.2 254 211 
Hydrolysis HL (day) Stable 72.1 Stable Stable 
Water metabolism HL (day) 466.2 91.2 236 56.7 
Sediment metabolism HL (day) 650.2 202.7 81 193 
KOC (L/kg) 236,750 6,040 266 76,800 

Note: HL = half-life 

Pesticide application data (including application timing, rate, method, interval, efficiency, and 
drift fraction) in the ERAs have been extracted in a model-ready format in the previous study 
(Xie et al., 2018) (See supplemental Table S2 of that paper). Application data are organized by 
pesticide and scenario. Modeling for the selected pesticides involved 14 PWC crop scenarios in 
California: “alfalfa”, “almond”, “citrus”, “cole crop”, “corn”, “cotton”, “fruit”, “grape”, 
“lettuce”, “row crop”, “strawberry”, “sugarbeet”, “tomato”, and “wheat”. The modeled scenarios 
also cover all high-risk use patterns for upland production agriculture in SWPP’s Pesticide 
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Registration Evaluation Model (PREM) (Luo, 2017a). More information on the scenarios such as 
associated soil properties and landscape descriptions are provided in Table 3. 

Note that there are 56 potential “pesticide-scenario” sets (= 4 pesticides × 14 scenarios), but only 
39 have been actually modeled in the USEPA ERAs and in this study. Some sets are not 
modeled, such as “bifenthrin-alfalfa” and “chlorpyrifos-cotton”, for which the use patterns may 
not be registered in California (or only registered for seed treatment), or associated with 
relatively low uses for the corresponding pesticide. Together with the 14 PWC scenarios, the 
selected pesticides have Kd values in the range of 0.8-8239 L/kg. 

4.2 Hydrological simulation results 

VFSMOD results of hydrological simulation (∆Q and ∆E) are shown in Figure 5 for the 14 PWC 
scenarios evaluated in this study. Both ∆Q and ∆E are presented as the overall reductions, 1-
sum(Qo)/sum(Qi), by a 10-ft VFS during the 30-year simulation period (1961-1990). For the 14 
scenarios, ∆Q ranges from 6.7% (cole crop) to 83.4% (citrus), and its variation is mainly related 
to the saturated hydraulic conductivity (VKS, Table 3) and incoming flow (Qi, averaged over all 
runoff events). A regression relationship is established as (R2=78%), 

∆𝑄𝑄 = 65.2 − 10.71ln(𝑄𝑄in) + 12.91ln (VKS) (23) 

 

Figure 5. Predict reductions to runoff (∆Q) and sediment (∆E) by a 10-ft VFS under the PWC 
scenarios in California 

This equation reflects the long-term (30-year) mitigation effects for runoff reduction by a VFS. 
It’s noteworthy that the equation has the same form and similar coefficient values as those 
derived in the SWAT model based on 1650 single-event training data (Neitsch et al., 2009) (unit 
conversion is utilized before comparison since the SWAT equation used Qi in mm and VKS in 
mm/hr). The SWAT training data were generated by VFSMOD for a wider range of VFS 
settings, compared to those modeled in this study, including VFS width (1-20m), soil properties 
(11 textural classes), and slopes (2-10%). 
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High efficiency of sediment removal (∆E) is predicted for all scenarios (74-100%, Figure 5). 
Results of correlation analysis indicated that ∆E is negatively associated with the concentration 
of total suspended sediment (TSS, kg/m3) and positively with runoff reduction (∆Q). For 
comparison, a median efficiency of 91% for sediment trapping was summarized from 244 field 
measurements with a median VFS width of 7.6 m (Reichenberger et al., 2019). For better 
comparison, 19 data points with 3-m (~10ft) VFS are extracted, showing sediment removals 
between 71-97%. The field conditions were associated with higher TSS (0.47-10.5 kg/m3) 
compared to those predicted with the PWC scenarios (0.0056-5.8 kg/m3). 

4.3 Additional analysis on experimental data for pesticide removal by VFS 

The field measurements for pesticide removal by a VFS, either as statistics of individual data or 
summarized in regression format, are used to evaluate the model predictions. For better serving 
this purpose, the available experimental data (Reichenberger et al., 2019) are further investigated 
for their representation of chemical properties and environmental conditions. As mentioned 
before, the field data are generally measured with water soluble pesticides (Figure 3), with a 
median Kd of 5.22 L/kg and the 90th percentile of 110 L/kg over the 244 data points. There are 
only 17 data points, or 7% of the database, associated with Kd> 200 L/kg. Therefore, it’s more 
appropriate to apply the regression equation (3) to pesticides with low or moderate adsorption 
with Kd< 200 L/kg, but not suitable to hydrophobic compounds such as pyrethroids. For the 
convenience of description, pesticides are classified according to their adsorption as, 

 Low-Kd pesticides with Kd< 200 L/kg, including most of herbicides, neonicotinoids, 
organochlorines, and organophosphates. The equation (3) calibrated by Reichenberger et 
al. (2019) will be used to estimate the observed removal efficiency. 

 High-Kd pesticides with Kd in the range of (200, 1000). A new regression equation (24) is 
developed in this study based on the 11 points with Kd> 200 (chlorpyrifos, 
pendimethalin, and permethrin). 

 Extremely high-Kd pesticides with Kd> 1000. No sufficient experimental data are 
available for these pesticides, and thus no regression equation can be developed. Their 
removal efficiency by a VFS will be only modeled with mechanistic approach as 
demonstrated in the next section. More field measurements are needed for validation 
purpose. 

Note that, unlike KOC values, Kd is not specific to a pesticide but also related to the organic 
carbon content in soil. In this study, for example, chlorpyrifos under most of the PWC scenarios 
is associated with low Kd. However, the modeling set of chlorpyrifos-sugarbeet (Kd= 210.2) is 
considered with high value of Kd due to the high organic carbon content in the scenario (3.48% 
compared to 0.29-1.77% in other scenarios). 

Based on the available experimental data (Reichenberger et al., 2019), 17 data points with Kd> 
200 L/kg are extracted to build a new regression equation for high-Kd pesticides. The idea of 
separate regression equations for different adsorption levels has been implemented in previous 
studies, with a cutoff KOC value of 9930 (Sabbagh et al., 2009) or 9000 (Chen et al., 2016), and 
significantly different regression equations were derived for the two groups of pesticides with 
KOC lower or higher than the cutoff value. Compared to KOC, Kd is a better predictor for phase 
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distribution by considering both the chemical property (KOC) and soil property (organic carbon 
content).  

Compared to pesticides with low Kd values, the reduction (∆P) of high-Kd pesticides are more 
related to sediment reduction (ΔE). The correlation coefficients are 0.786 for all pesticides and 
0.939 for those with Kd> 200 L/kg. Based on the 17 data points with Kd> 200 L/kg, a new 
regression model is developed (R2= 94%), 

∆𝑃𝑃 = −14.94 + 0.2786∆𝑄𝑄 + 0.878∆𝐸𝐸 (24) 

Compared to the relationship calibrated with all pesticides, Eq. (3), the regression equation for 
high-Kd pesticides (> 200 L/kg) is associated with a higher coefficient on ΔE (0.878 vs. 0.4892), 
and generally predicts high ∆P compared to Eq. (3). Nash-Sutcliffe coefficient (NSE) suggests 
higher prediction performance by the new equation (NSE=0.94) vs. the previous one (0.80). 

 

Figure 6. Comparison of the two regression equations for VFS removal efficiency of high-Kd 
pesticides, based on the 17 data points with Kd> 200 L/kg in the experimental dataset compiled 
by Reichenberger et al. (2019) 

Based on the equations (3) and (24), a dataset of pesticide removal efficiencies (Table 5) can be 
generated from field measurements to validate the results from mechanistic modeling. 
Hydrological simulation results are taken from VFSMOD modeling under the 14 selected PWC 
scenarios (Figure 5). Together with the scenario-specific soil properties (organic carbon content 
and clay content), the predicted daily hydrologic variables from PRZM (Qin and Ein) and 
VFSMOD (∆Q and ∆P) are used to estimate the “observed” removal efficiency with Eq. (3) for 
Kd< 200 and Eq. (24) for Kd in (200, 1000). 
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Table 5. Pesticide removal efficiency by a VFS estimated by regression equations 
Scenario bif Kd bif ∆P chl Kd chl ∆P imi Kd imi ∆P perm Kd perm ∆P 
Alfalfa 4190.5 NA 106.9 51.4 4.7 44.7 1359.4   NA 
Almond 1917.7 NA 48.9 72.8 2.2 68.7 622.1 93.0 
Citrus 1089.1 NA 27.8 67.5 1.2 66.9 353.3 87.0 
Cole crop 4119.5 NA 105.1 44.6 4.6 43.4 1336.3 NA 
Corn 1373.2 NA 35.0 51.3 1.5 57.0 445.4 66.7 
Cotton 686.6 65.2 17.5 60.3 0.8 60.2 222.7 72.5 
Fruit 1373.2 NA 35.0 69.6 1.5 70.6 445.4 88.9 
Grape 1680.9 NA 42.9 71.5 1.9 67.8 545.3 87.4 
Lettuce 1716.4 NA 43.8 55.0 1.9 51.1 556.8 70.6 
Row crop 4119.5 NA 105.1 50.5 4.6 48.2 1336.3 NA 
Strawberry 1373.2 NA 35.0 67.8 1.5 67.1 445.4 89.3 
Sugarbeet 8238.9 NA 210.2 49.9 9.3 49.6 2672.6 NA 
Tomato 2249.1 NA 57.4 55.1 2.5 49.2 729.6 67.7 
Wheat 1041.7 NA 26.6 56.6 1.2 57.3 337.9 80.0 

Notes: [1] “bif”= bifenthrin, “chl”= chlorpyrifos, “imi”= imidacloprid, and “perm”= permethrin. 
[2] “NA” indicates Kd> 1000 for which no sufficient experimental data and regression equations 
available to estimate its removal efficiency. [3] Shaded cells suggest Kd in the range (200, 1000) 
and their ∆P values are estimated from Eq. (24), while other values are from Eq. (3) for Kd< 200. 
[4] This table presents results from hydrological simulations; some sets of pesticide-scenario 
may not be modeled for pesticide simulations, see more information in Table 6.  

4.4 Pesticide removal efficiencies under PWC scenarios 

For the pesticides and PWC scenarios selected in the case studies, the predicted removal 
efficiencies (∆P) by a 10-ft VFS range from 41.2% to 98.9% (Table 6). Note that ∆P here is the 
overall mass reduction, calculated as the relative change between the total influent and total 
effluence masses of pesticide through the VFS during the 30-year simulation period. For a quick 
comparison, experimental dataset reported event-based efficiencies of pesticide removal in the 
range of 5.6-100%, with filter sizes of 0.5-20.1m (Reichenberger et al., 2019).  

For each PWC scenario, there is a general increasing trend for ∆P from water-soluble to 
hydrophobic compounds. For example, predicted ∆P values for “cole crop” are 41.2% for 
imidacloprid, 47.8% for chlorpyrifos, 81.6% for permethrin, and 94.4% for bifenthrin (Table 6). 
This is related to the high sediment removal efficiency (∆E) predicted for all scenarios (Figure 
5). Most of the incoming particle-bound pesticide masses are trapped with sedimentation in a 
VFS. As a hydrophobic chemical, therefore, bifenthrin is predicted with high ∆P for all 
scenarios.  
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Table 6. Predicted efficiencies of pesticide removal (∆P, %) by a 10-VFS under 14 PWC 
scenarios (fres= 0 and fthr= 0.4) 
Scenario Bifenthrin Chlorpyrifos Imidacloprid Permethrin 
Alfalfa NA 50.8 NA 81.1 
Almond 98.7 75.7 69.0 90.6 
Citrus 97.2 73.3 67.3 91.9 
Cole crop 94.4 47.8 41.2 81.6 
Corn 81.3 53.8 NA 66.4 
Cotton 76.7 NA 50.7 NA 
Fruit NA 75.3 70.9 92.4 
Grape 98.9 NA 65.5 93.7 
Lettuce 87.5 NA 52.5 73.6 
Row crop 93.0 NA 48.7 87.0 
Strawberry 90.4 71.5 70.2 81.2 
Sugarbeet NA 78.6 NA NA 
Tomato 80.6 NA NA 67.2 
Wheat NA 54.6 NA NA 

Notes: To be consistent with USEPA’s ERAs (USEPA, 2010, 2011, 2016a, b, 2017), some 
pesticide-scenario sets are not modeled (indicated by “NA”).  

For each pesticide-scenario set in this study, the model-predicted removal efficiency (Table 6) is 
compared to that estimated from the regression equation derived from experimental data (Table 
5). Specifically, the modeling sets with Kd between 0 to 200 L/kg, including all scenarios with 
imidacloprid and most of scenarios with chlorpyfiros (except for the “sugarbeet” scenario, Kd= 
210.19), are compared to the results from the regression equation (3). The modeling sets with Kd 
between 200 to 1000 L/kg (i.e., most of scenarios with permethrin and the “sugarbeet” scenario 
with chlorpyrifos), are compared with the results from the newly derived equation (24) for high-
Kd pesticides. Except for the “cotton” scenario (Kd= 686.6), modeling results for bifenthrin are 
not considered for validation since there are not relevant experimental data to estimate its 
removal efficiency in a VFS.  

In summary, modeling sets of pesticide and scenario with Kd< 1000 are validated with the 
corresponding removal efficiency summarized from regression equations over field 
measurements (Figure 7). The Nash-Sutcliffe coefficient (NSE) between the predictions and the 
observations (estimated by the regression equations) is 0.89 for all data in Figure 7, or 0.87 for 
chlorpyrifos, 0.87 for imidacloprid, and 0.81 for permethrin. Higher uncertainty is associated 
with Eq. (24), to which the results of bifenthrin and permethrin are compared. Only 17 
experimental data points are available for building Eq. (24), compared to 244 points for Eq. (3) 
used in the validation of the model predictions for chlorpyrifos and imidacloprid. The model 
performance is also affected by the interacting factor (fthr), which will be discussed in Section 
4.6.  
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Figure 7. Model validation on the predicted pesticide removal efficiency for pesticide-scenario 
sets with Kd< 1000 L/kg, based on Table 5 and Table 6.  

Bifenthrin and permethrin under some PWC scenarios have higher Kd values (up to 8238.9 L/kg) 
than those with the experimental data. The model-predicted ∆P values for bifenthrin (77-99%, 
Table 6) are significantly higher than those from the regression equations (3) (45-83%) or (24) 
(63-93%) which was developed based on relatively lower Kd values. This is consistent with the 
conclusion from (24), where the regression relationship is re-calibrated with a subset of the 
experimental database with Kd> 200, and the new equation generates higher ∆P values and better 
performance relative to that built from all data. In summary, it’s reasonable to expect a higher 
VFS removal efficiency for bifenthrin (and other hydrophobic pesticides) than that from the 
existing empirical trapping equations, and more field data are needed to validate the model 
predictions for bifenthrin. 

4.5 Effects of resuspension 

In addition to the results with fres= 0 (no resuspension of previously deposited solids, Table 6), 
model simulations are conducted with fres= 1-∆E (the maximum resuspension), and their 
differences of predicted pesticide removal efficiencies are plotted in Figure 8. For most of the 
modeling sets, the results without resuspension are equal to or smaller than those with the 
maximum resuspension and thus represent conservative estimation of removal efficiency by a 
VFS. For chlorpyrifos and imidacloprid, the differences range from 0-1.3%, with median value 
of 0, indicating that removal efficiency for water-soluble or moderately soluble pesticides are not 
sensitive to resuspension. This conclusion is also applied to bifenthrin and permethrin under 
most of the modeled scenarios, except for “corn”, “cotton”, “lettuce”, and “tomato”.  
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Figure 8. Difference between the predicted pesticide removal efficiencies with fres= 0 (no 
resuspension) and fres= 1-∆E (the maximum resuspension). Positive values indicate higher 
removal efficiency with more resuspension modeled. 

Further investigations result in the following findings for the sensitivity of predicted ∆P on 
resuspension (fres): 

1) Soil adsorption (Kd) of the pesticide-scenario set and sediment removal efficiency (∆E) 
by the VFS determine the magnitude of the sensitivity. 

a. Resuspension mainly affects the predicted removal efficiency for hydrophobic 
pesticides (bifenthrin and permethrin in this study), while more water soluble 
pesticides are generally insensitive to the value of fres. 

b. In addition, the impact of resuspension is predicted with relatively low sediment 
removals. This explains the fact that the differences on ∆P are predicted for the 
scenarios of “corn” (∆E= 75.6%), “cotton” (85.2%), “lettuce” (81.1%), and 
“tomato” (82.2%), but not for other scenarios with ∆E> 90%. 

2) The incoming sediment concentration (TSS) determines the sign (positive or negative) of 
the sensitivity. The median TSS is 0.8 kg/m3 over the modeled 14 scenarios. The “corn” 
and “lettuce” scenarios are associated with much higher TSS of 4.7 and 5.8 kg/m3, 
respectively, and the predicted ∆P for bifenthrin is decreasing with fres (i.e., the more the 
resuspension, the less efficient the pesticide removal. For the “cotton” and “tomato” 
scenarios with the low TSS of 0.2 and 0.3 kg/m3, respectively, the predicted ∆P for 
bifenthrin and permethrin significantly increases with more resuspension (Figure 8). 

For model applications, therefore, it’s recommended that the model run without resuspension 
(fres= 0) be first conducted for any pesticide and field conditions. For pyrethroids or other 
hydrophobic compounds, in addition, if the edge-of-field runoff is associated with high sediment 
concentrations according to PWC modeling or field measurements, additional model run is 
needed with the maximum possible resuspension (fres= 1-∆E). If the 2nd model run predicted a 
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lower ∆P than the 1st run, the lower value should be reported for the pesticide removal efficiency 
for regulatory evaluation on VFS mitigation effects.  

4.6 Effects of runoff interaction 

Table 6 shows the modeling results with 40% runoff interacting with the soil mixing layer in a 
VFS, or fthr= 0.4. There is a general increasing trend for the predicted pesticide removal 
efficiency with the interacting fraction. Figure 9 shows an example of the model predictions 
under the “almond” scenario with fthr changing from 0.0 (no through flow or Qthr= 0) to 1-∆Q 
(the maximum interaction or Qthr= Qout, Figure 4). Results are presented as relative values to the 
predicted ΔP with fthr= 0. Compared to bifenthrin and permethrin, predicted ΔP of chlorpyrifos 
and imidacloprid are more sensitive to the interacting fraction. Under the “almond” scenario, the 
maximum runoff interaction would increase the removal efficiency by 1.4 (chlorpyrifos) to 1.5 
(imidacloprid) times compared to that predicted without runoff interaction.  

 

Figure 9. Predicted pesticide removal efficiency with runoff interacting fraction (fthr), shown as 
relative values to the efficiency predicted with fthr= 0 (no through flow). 

Since there is no direct field measurements for the runoff interaction and pesticide extraction, the 
parameter fthr is determined based on available experimental data on pesticide removal efficiency 
by a VFS. Similar to the model validation (Figure 7, fthr= 0.4), the modeling results with fthr= 
0.3 and 0.5 are compared to the observation dataset prepared in Table 5. Both simulations have 
lower modeling performance, NSE= 0.774 for fthr= 0.3 and NSE= 0.766 for fthr= 0.5, than the 
previous one with fthr= 0.4 (NSE= 0.892). A high fthr would result in overestimation of the 
pesticide removal efficiency, while modeling results with low fthr underestimates it. For the 
modeling sets used for validation (Figure 7), the average values of predicted ∆P are 64.8% with 
fthr= 0.3, 68.6% with fthr= 0.4, and 72.3% with fthr= 0.5, compared observed value of 67.2%. 
Therefore, an interacting fraction of 0.4 is recommended for VFS modeling under the PWC 
scenarios in California. As expected, this value is higher than the interacting fractions for 
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agricultural fields calibrated with field measurements as 0.266 (Young, 2016b) or 0.19 (Young 
and Fry, 2017). 

 

Figure 10. Effects of the interacting fraction (fthr) on the modeling performance (Nash-Sutcliffe 
efficiency, NSE, as the blue bars) and average values of predicted pesticide removal efficiencies 
(orange line)  

5 Conclusion 

The PWC-VFS modeling framework has been improved in this study with a fully mechanistic 
approach for pesticide simulations in a VFS. Physically-based modeling is used to systematically 
formulate the simultaneous pesticide transport processes in the runoff-soil interaction. Compared 
to previous methods for pesticide trapping and extraction in a VFS, the new approach does not 
prescribe a certain amount of pesticide mass transport between soil and the overlying runoff, and 
the modeling performance is not affected by regression coefficients varying with available 
experimental data. The resulting equations for pesticide removal efficiency, Eq. (20), also extend 
the previous semi-mechanistic method (∆Pd= ∆Q and ∆Pp= ∆E) to more general field conditions. 

The updated PWC-VFS model is demonstrated in case studies with 4 widely-used pesticides 
(bifenthrin, chlorpyrifos, imidacloprid, and permethrin) under 14 PWC scenarios in California. 
Model-predicted ∆P is generally not sensitive to the simulation of resuspension of solids and 
associated pesticides. Therefore, model simulations without resuspension are suggested for 
conservative estimation of pesticide removal by a VFS, except for hydrophobic pesticides and 
high sediment loadings. Predicted ∆P values for modeling sets with Kd< 1000 (chlorpyrifos, 
imidacloprid, and some scenarios with permethrin) are compared with experimental data, while 
there are no sufficient field measurements for the cases with Kd> 1000 (bifenthrin in this study).  
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For PWC scenarios in California, the results of model validation recommend a runoff interaction 
fraction of 0.4 (i.e., 40% runoff will interact with and extract pesticide from the soil mixing 
layer), which generates the best modeling performance (NSE= 0.89). 
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