Urban Pesticide Runoff from Neighborhoods in Northern California and their Contribution to Pesticide Contamination in Urban Creeks

Mike Ensminger
California Environmental Protection Agency
Department of Pesticide Regulation
Environmental Monitoring
Surface Water Protection Program

October 16, 2012
Introduction

- Study initiated in 2008
 - Previous monitoring by other agencies
 - High urban pesticide use
 - Homeowner use not reported
 - Estimated ~20% total pesticide use
 - High potential for runoff in urban areas
 - Concern, toxicity to aquatic organisms
 - Uniform state-wide program, multi-areas of California
 - Ongoing
Objective 1: What Pesticides are in Surface Water?

R Budd 2011
Objective 2: Stormdrain vs. Receiving Water
Objective 3: Seasonal Differences

Dry Season

Rain Storm Event
Objective 4: Toxic?

EPA Benchmarks: “Comparing...concentration of a pesticide...can be helpful in interpreting monitoring data, and to identify and prioritize sites and pesticides that may require further investigation”

- Euglenozoans
- Green algae
- Diatoms
- Dinoflagellates
- C. dubia
- Hyalella

An aquatic food chain:
- Producers
 - Phytoplankton
- Primary consumers
 - Zooplankton
- Secondary consumers
 - Delta smelt
- Tertiary consumers
 - Killer whale
- An aquatic food chain

- Objective 4: Toxic?
- EPA Benchmarks: "Comparing...concentration of a pesticide...can be helpful in interpreting monitoring data, and to identify and prioritize sites and pesticides that may require further investigation"
Methods
Results – by Main Areas

- Pleasant Grove Creek
- Grayson Creek
- Alamo Creek
San Francisco Bay Area - Grayson Creek -
San Francisco Bay Area - Alamo Creek watershed -
San Francisco Bay Area
- Alamo Creek watershed -

Detection Frequency

- Stormdrain
- Receiving Water

- Bifenthrin
- Carbaryl
- Permethrin
- Fipronil
- Malathion
- Diazinon
- Chlorpyrifos
San Francisco Bay Area
- Alamo Creek watershed -

Detection Frequency

- Stormdrain
- Receiving Water
Sacramento Area
- Pleasant Grove Creek -

Detection Frequency

- Stormdrain
- Receiving Water

Bar chart showing the detection frequency of various pesticides in stormdrain and receiving water samples.
Effect of Rain on Pesticide Runoff

![Box plot showing the number of pesticides detected during the dry season and during a rainstorm.](image)
Comparison to US EPA BMs

Bifenthrin - Stormdrain outfalls

- Bifenthrin
- acute fish (75)
- chronic invert (1.3)

Folsom

Roseville

Bifenthrin Concentration (ng/L)

Time (April 2008 – August 2012 [per section])

RL = 1
Comparison to US EPA BMs

FPs concentration (µg/L)

- FPs
- Invert Chronic (0.011)
- Invert Acute (0.11)
- RL

Time (April 2008 – August 2012 [per section])
Three stormdrain outfalls, Roseville

RL = 0.02

0.01
0.1
1
Conclusions

- Multiple pesticide detections at any given time
 - Median = 4 per sample

- Detections in stormdrain outfalls ~ to receiving waters

- Rain increases the number of pesticides detected
 - Median = 2 vs. 6 pesticides per sample
Conclusions

Regional differences (SFB vs. SAC):
- SAC > fipronil, pyrethroids (bifenthrin, cyfluthrin, cypermethrin, permethrin)
- SAC > dicamba, pendimethalin
- SFB > diuron, triclopyr, OPs

Bifenthrin, fipronil main concern for aquatic tox
Conclusions

- Main detections (> 25% DF):
 - Insecticides: bifenthrin, fipronil, imidacloprid (limited monitoring)
 - Herbicides: 2,4-D, triclopyr, dicamba, diuron, pendimethalin, MCPA