Understanding Pesticide Formulations

Terry Gouge Formulations Development Bayer ES

Overview

What is a Formulation?

Some Basic Formulation "Types" (5 of >60)

How/Why do we select a Formulation type?

 Common additives – what differences they make!

What is a Pesticide Formulation?

 A homogeneous and stable mixture of active and inert ingredients which make the final product simpler, safer, and more efficacious to apply to a target pest.

 Even though there are no chemical reactions involved, there are many aspects of chemistry present in a formulation. Some of the chemistry involved is thermodynamics of mixing, phase equilibria, solutions, surface chemistry, colloids, emulsions and suspensions.

Formulation Development

➢Dispersants

- > Wetting agents
- Solvents
- Emulsifiers
- Defoamer
- Stabilizer
- •Anti-microbials
- •Anti-freeze
- •Pigments/Colorants
- Buffers, etc.

COMMERCIAL PRODUCT

Common Formulation Types

Dry - Sprayable

- WP Wettable powders
- WG or WDG Water dispersible granule

Liquid Sprayable

- SL Soluble Concentrate
- SC Suspension Concentrate
- EC Emulsifiable Concentrate
- ME Microemulsion
- OD Oil Dispersion
- CS Microencapsulated Particles

Dry – Spreadable Granule

GR – Soil applied Granule on inert or fertilizer carrier

WETTABLE POWDER (WP)

A solid pesticide formulation – micronized to powder form and typically applied as suspended particles after dispersion in water.

Characteristics: simple but dusty, difficult to measure, easy to mix into water

WATER DISPERSIBLE GRANULE (WG)

A pesticide formulation consisting of granules to be applied after disintegration and dispersion in water. The granular product has distinct particles within the range 0.2 to 4 mm. Water dispersible granules can be formed by a) agglomeration, b) spray drying, or c) extrusion techniques.

Micronized to ~5 um

Characteristics: Low dust, simple to measure, more time needed to disperse

SUSPENSION CONCENTRATE (SC)

A stable suspension of solid pesticide(s) in a fluid usually intended for dilution with water before use. Ideally, the suspension should be stable (i.e. not settle out).

Solid particles (5 um) suspended in aqueous phase due to anionic/nonionic dispersant – wetting agent with polymeric viscosity stabilizer

Characteristics: A.I. must be water insoluble with friable crystals, Easy to tankmix (very compatible) - A.I. tends to settle out over time.

Formulation Development

Typical Suspension Concentrate

EMULSIFIABLE CONCENTRATE (EC)

A solution of a pesticide with emulsifying agents in a water insoluble organic solvent which will form an emulsion when added to water. Complete HLB must be reached to achieve a long term stable formulation.

Characteristics: A.I. must be solublized in water immiscible solvent (VOCs, Odor) Correct HLB leads to stable emulsion in water. Solvents may increase toxicity to operator/environment and degrades spray equipment parts, freezing may initiate crystal formation. Often very efficacious if no phyto.

Micro-emulsion (ME)

A solution of a pesticide with emulsifying agents in a water insoluble organic solvent which will form an solution/emulsion when added to water. Complete HLB must be reached to achieve a long term stable formulation.

Characteristics: A.I. must be solublized in 'selected" surfactants (toxicity, cost) Very stable thermodynamically, A.I. type and level limited in ME formulations

What determines formulation type for an active ingredient?

- Active Ingredient Characteristics:
 - Human/environmental toxicity profile (may eliminate WPs or ECs)
 - Solubility profile in water or other solvents/surfactants (SC, EC, ME)

Market may demand specific requirements

• (e.g., soil granule for consumer, no VOCs, fertilizer compatibility)

NOTE RTU formulations are different from their "more concentrated" versions (Market Demands and Formulation Ingredients – VOC issue?)

- Enhanced A.I. Properties
 - (cuticle penetration, particle size, dislodgability)
- Product differentiation (WP, SC, SC w/penetrate, WG. GR, GR on Fert, ME)

Residues Left After Application

Bayer Environmental Science

The value of Surfactants and Adjuvants

Bayer Environmental Science

The value of Surfactants and Adjuvants

SC Spray Droplets Run-off without help from surfactants

The value of Surfactants and Adjuvants

Droplets stay on surface and don't run off

Character of dried deposits of two SC formulations

With this SC formulation, AI crystals segregate to periphery of droplet, and dry in a classic "coffee ring." With this SC formulation, AI crystals are more evenly dispersed and trapped within a complex formed by formulation additives.

Bayer Environmental Science

Bayer Environmental Science

Questions?