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OUTLINE

1. Postdoctoral Research (National Institute of Standards and Technology (NIST), Dr. Miral
Dizdaroglu)

A. DNA damage analysis in human cells

B. DNA extraction method development and DNA damage analysis in C. elegans
2. Graduate Work — Daphnia magna (U.C. Berkeley, Vulpe Laboratory)

A. Chemical flame-retardants

B. Silver nanowires
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DNA DAMAGE IN HUMAN CELLS

MCF7 — mammary gland epithelial metastatic adenocarcinoma

MCF10A — mammary gland epithelial non-cancer (fibrocystic tissue)

HelLa — cervical epithelial adenocarcinoma

HepG2 — liver epithelia, hepatocellular carcinoma

Image credit: Alex Tona
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EXPERIMENTAL PLAN

1. Grow cells as recommended
2. Aliquot cultures into multiple samples, 6 x 10° cells per sample.
3. Process “paired” samples.

DNA 1 DNA 2 DNA 3 Protein 1 Protein 2
e = i = i = =

\ \ \ \ \

1. GC-MS/MS: E. coli Fpg/NTH proteins (5-OH-Cyt, 5-OH-Ura, thymine glycol, 5-OH-5-MeHyd, 8-OH-Gua,FapyGua, FapyAde, 8-OH-Ade)
2. LC-MS/MS: Nuclease P1, Phosphodiesterase I, Alkaline Phosphatase (8-OH-dGuo, 8-OH-dAdo, R-cdAdo, S-cdAdo)

3. GC-MS/MS: Nuclease P1, Phosphodiesterase I, Alkaline Phosphatase (R-cdGuo, S-cdGuo)

Protein

1. Total protein

2. Cytoplasmic and nuclear fractions
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OXIDATIVE STRESS

» Oxidative stress is caused by many factors including chemical exposure and metabolism.
» Hydroxyl radical is most reactive species.
* Increased damage induces up-regulation of DNA repair enzymes

Reactive Oxygen Reactive Nitrogen
Intermediates (ROV) Intermediates (RNI)
guanidino
RN nitrogen of
oxygen 1 O, hagocyte nitric oxide |-—L;e L-arginine
e oxidase synthase
eroxide O,e- «NQ nitric oxide
P I © . RSH + O, RSH
e superoxide ) -le H + e
dismutase OONO- NOz o
hydrogen eroxynitrite  RSOH ~ NO,” nitite ,
peroxide H0, P YH+ sulfenic O, nitrosothiol
+1el acid l“e
OONOH _ o
hydroxyl . peroxynitrous *NO, nitrogen dioxide
radical acid
+1el 1 l -le
\/ .
water H,O [*NO,---OHs] NO,~ nitrate

MATERIAL MEASUREMENT LABORATORY



WORK-FLOW — ISOTOPE DILUTION

DNA

Enzymatic (Nuclease P1,
phosphodiesterase I,
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LC-MS/MS

1. GC-MS/MS: E. coli Fpg/NTH proteins (5-OH-Cyt, 5-OH-Ura, thymine glycol, 5-OH-5-MeHyd, 8-OH-Gua,FapyGua, FapyAde, 8-OH-Ade)
2. LC-MS/MS: Nuclease P1, Phosphodiesterase I, Alkaline Phosphatase (8-OH-dGuo, 8-OH-dAdo, R-cdAdo, S-cdAdo)
3. GC-MS/MS: Nuclease P1, Phosphodiesterase I, Alkaline Phosphatase (R-cdGuo, S-cdGuo)

NIST
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GC-MS/MS AND LC-MS/MS

% GC or LC separates a given mixture into its components.

2. MS/MS identifies the components of the mixture separated by GC or LC, and quantifies
them by isotope-dilution.

®

O Ionization ’ &2
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Gas-phase .
sample molecules ® spectrum
Fragmentation

Methodology is specific, sensitive and quantitative
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MASS-SPEC BASED TECHNIQUES

GC-MS/MS and LC-MS/MS — combination of two techniques
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MASS SPECTRA OF TRIMETHYLSILYL DERIVATIVES

A: 4,6-diamino-5-formamidopyrimidine (FapyAde)
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B: 4,6-diamino-5-formamidopyrimidine-1°N,,3C,2H

Isotope-dilution

NIST
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ION SIGNALS — STANDARD
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OXIDATIVELY INDUCED DNA BASE LESIONS

guanine-derived products
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Reviewed in: Dizdaroglu, M. and Jaruga, P., Free Radic. Res. 46, 382-419, 2012

MATERIAL
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DNA LESION LEVELS IN HUMAN CELLS
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DNA LESION LEVELS IN HUMAN CELLS — CYCLO-DEOXYADENOSINE
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DNA LESION LEVELS IN HUMAN CELLS — CYCLO-DEOXYADENOSINE
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APE1l LEVELS IN HUMAN CELLS

APEL1l level (ng/ng)
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IN VITRO SUMMARY

* Preliminary analysis shows that lesions are detected at different levels in mammary cancer
versus non cancer cells.
» Lesions repaired by BER are found at higher levels in cancer cells.
» Lesions repaired by NER are found at higher levels in normal cells.

» The non-cancerous cell line (MCF10a) also has a lower level of DNA repair enzyme APE1
than the corresponding cancerous cell (MCF7).

IN VITRO NEXT STEPS

* Incorporate additional DNA replicates, MTH1 data
* Colleagues at NIST may investigate effects of specific toxins, such as cigarette smoke or
environmental contaminants

MATERIAL MEASUREMENT LABORATORY




DNA DAMAGE IN CAENORHABDITIS ELEGANS

a.k.a. C. elegans, ‘worms,’ nematodes
Usually lives in soil

Used for medical and environmental studies

Photo credit: Sanem Hosbas Coskun Photo credit: Mike Carrier
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MOLECULAR STUDIES WITH THE NEMATODE

1. Microarrays, blots, plate assay kits
2. RNAI

3. Transgenic/ genetic

4. DNA damage — gPCR

5. Apoptosis

6. Cellcycle
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NEMATODE GOALS

1. Grow healthy populations of nematodes
in liquid growth media (S-basal, CeHR)

2. Insilico investigate protein homology to
DNA repair enzyme with NIST standards

3. Develop high-salt DNA extraction method
for C. elegans

4. Extract DNA from nematodes with high-
salt and phenol-based protocols

5. Measure background DNA lesion levels

6. Determine if one growth medium or
extraction type induces more DNA
lesions.

7. Conduct toxicity studies with
commercially relevant nanomaterials)

Photo credits: Sanem Hosbas Coskun
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WORM GROWTH
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DNA REPAIR ENZYME HOMOLOGY

DNA repair enzymes: APE1, OGG1, MTH1, NTH1, Pol-B, NEIL1
* Searched C. elegans proteome for DNA repair enzymes
e 7 (outof 27,164) proteins were somewhat homologous to human (e.g., NTH1 - DNA glycosylase)
e Used PeptideCutter — ExPASy to find computationally “digest” C. elegans proteins into peptides
* Resulting tryptic peptides of C. elegans were different from human peptides.

C. elegans DNA repair enzymes cannot be quantified using our standards —

We can not (yet) quantify DNA repair enzymes in C. elegans

C. elegans genome: Science. 1998 Dec 11;282(5396):2012-8.
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HIGH-SALT DNA EXTRACTION

Grow nematodes, divide into aliquots of
~500,000 nematodes, freeze at -80 ° C

Incubate with 2 mg/ mL
Proteinase K, 55 °C for 2 hr

Crash out proteins with Centrifuge at 15,000 x g for
saturated NaCl phase separation

Precipitate DNA out of _
- —> h RNase, cl
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QUALITY AND QUANTITY OF DNA

Quality:

e 260/280 photospectrometer readings

e Shape of spec trace

e Percent RNA (qubit)

e Amount DNA (coomassie blue/ Bradford assay)

e Size of fragments (pulse-field gel)

e Source of DNA (E. coli, bovine or C. elegans, dPCR)

Quantity

e Spectrophotometry

* Qubit (not as reliable!)
* NIST DNA standard

MATERIAL MEASUREMENT LABORATORY




HIGH-SALT VERSUS PHENOL DNA EXTRACTION

DNA yields are not significantly different (two-tailed t-test, p-value = 0.506)

Extraction Type
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High-salt extracts contain more proteins than phenol extracts.
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PRELIMINARY LESION ANALYSIS IN C. ELEGANS

High-salt extracts from worms grown in S-basal.
Phenol extraction caused increased background DNA damage levels (not shown)

lesions/ 5-OH-

106 bases FapyAde FapyGua 8-OH-Gua 5SMeHyd R-cdA S-cdA R-cdG S-cdG

average 7.06 15.38 17.73 28.49 0.30 0.13 13.10 22.90
sd 1.72 4.04 8.26 10.57 0.05 0.01 0.40 0.84
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C. ELEGANS SUMMARY

* Used numerous molecular techniques to extract DNA and measure it’s quantity and

guality as well as measure levels of DNA lesions.
* Next steps for NIST Nanomaterial Genotoxicity group is to conduct toxicity assays, using
standardized culture and DNA extraction methods and other molecular methodologies.

e splCP-MS, fluorescent plate assays, etc.
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Silver Nanowires

* Anisotropic

 Increasingly used in nano-scale devices
and pharmaceuticals: emerging concern

Two lengths:
- Short (S) 30 nm x 2um
- Long (L) 65 nm x 20 um
Two coatings:
- Silica (SiO,)

Atomic Force Microscopy of short PVP AgNWs - Polyvinyl pyrolidinone (PVP)
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Aqguatic Toxicity of Silver

 Competes for Na* uptake at qill

e Binds Mg4*-binding site cysteine on the
Na*/K* ATPase

— Double whammy to ionoregulation

* General stress response, increased
ammonia, fluid volume changes, and
hemoconcentration

(1) Péqueux A. Journal of Crustacean Biology 1995;15(1):1-60.

(2) Andren A, Bober T editors. Society of Environmental Toxicology and
Chemistry;2002.

(3) Bianchini A., Wood CM. Environ Toxicol Chem 2003 Jun;22(6):1361-
1367.



Our Questions:

e Is it the Ag*, or is it the particle?
 How do they cause toxicity?




Assays

e Acute LC.,

e Gene expression analysis and pathway
analysis
— Microarray, gPCR
— High-throughput sequencing

e Hemolymph extraction




Acute LC., Results
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Acute, 24-hour LC.,s for AgNW and Ag* on Daphnia magna in A) COMBO media
and B) EPA media. LC.,s are measured in micrograms silver per liter.

Scanlan LD et al. ACS Nano 2013, 7, 10681-10694. DOI: 10.1021/nn4034103



[image: image1.jpg]






Ag* In Media

Measure silver release

Add 12 mg/L Ag NW to water, EPA, COMBO media

Take aliquots, filter through(0.02 um filter

Measure total dissolved silver with ICP-MS

[Ag] (ug/L)

—4— AgNW-S-Si02 in water
- AgNW-5-8i02 in Combo
—8— AgNW-S-Si02 in EPA
—&— AgNW-S-PVP in EPA

£

10 15 20 25
Time (hours)

S - Si0O, in water

S -SiO, in COMBO

S - Si0, in EPA
S—-PVP

all filters retain some Ag*

SiO,-coated NW most reactive!
Silver release depends on media
Conditions not on graph had no
detectable Ag+ release



Is Toxicity Caused by Ag*?

Does Ag oxidation through SiO, coating explain toxicity?

« Assume Ag* release in media proportional to Ag® concentration
« Scale Ag* release to LD, values

LD, Predicted [Ag*] at LD,
S-SiO, in COMBO = 167 ug/L [Ag*] = 0.14 ug/L
S-SiO, in EPA =4 pg/L [Ag*] = 0.001 pg/L

AgNO,; ~ 0.8 pg/L
_

(Much) smaller values



Ingestion = Absorption?

SEM imaging of AgNW from Daphnia hemolymph

All types of nanowires were found in the hemolymph

PVP-coated AgNW

Strange fibrous coating

SiO,-coated AgNW

Complete dissolution of coating
Possible recrystallization




Gene Expression Assays

0,0

Sodote \\\

’0 00 ° 00 \
00

Exposed (1/10 LC,,)

DGE

0,0
D0g0y \\\ -

0 00 00 (confirmed with qPCR)
0' 0 0

4 control x 4 treated = 16 comparison
Control

sets



Comparison of DGE Profiles

* HOPACH

L-Si02-

T T
L-PVYP L-Si02 S-Si02 Silver S-PVP
1 2 3 3 3

Hierarchical ordered partitioning and collapsing hybrid (HOPACH) analysis of gene expression data from AgNW-exposed versus media-only
control daphnids. HOPACH clustered data into three groups based on similarity of gene expression profile. Groups are labeled on the x-axis
as 1 (L-PVP-NW), 2 (L-SiO2-NW), or 3 (S-Si02-NW, Ag+, and S-PVP-NW).



KEGG Pathway Analysis

TABLE3. KEGG Pathway Analysis of Gene Expression Data
from Daphnia magna Exposed to AgNWs Identified the
Enrichments of Different Biological Pathways®

affected biological pathway L-PVP  L-Si0, S-PVP silver
oxidative phosphorylation 53 x 10°™
spliceosome 0.02
peroxisome 0.02
lysosome 0.04
——> ribosome 0.01 001 18 x 107"

progesterone-mediated oocyte 0.01

maturation
metabolism of xenobiotics by 0.02

cytochrome P450
drug metabolism - cytochrome P450 0.03
retinol metabolism 0.05

“The p values 0.05 or less were considered significant. KEGG analysis on S-5i0,-NW
data found no statistically significant results.



Enrichment Analysis

TABLE 4. Blast2GO Analysis Shows Significant Enrich-
ment of Functional Gene Groups PVP-NW and Ag™
Exposures

enriched molecular function” exposure condition
structural constituent of cuticle (G0:0042302) L-5i0,, 5-Si0,
structural molecule activity (G0:005198) L-5i0,, silver
structural constituent of ribosome (G0:0003735) silver
ribosome biogenesis (G0:0042254) silver
ribosome (GO:0005840) silver
ribonucleoprotein complex biogenesis (G0:0022613) sSilver
cellular component biogenesis at cellular level (GO:0071843)  silver
ribonucleoprotein complex (G0:0030529) silver
cytosolic ribosome (G0:0022626) silver

“@0: term corresponds to the gene ontology identification in Blast2GO.



Mechanisms

e KEGG, B2G and HOPACH indicate diverse
range of biological endpoints

* Toxicity appears to be attributed to both silver
and to the silver nanowire



ICP-MS response ('*“Ag counts)

SpICP-MS

80004 b) 3000

2000 4 |
1000

804

C) 60—

o
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L

Frequency
Frequency

60+

Uhmmtuu-n

T T T T 1
1} 50 100 150 200 i} 500 1000 1500 2000 2500 3000 1000 2000 3000 4000 BO00

Time (sec) ICP-MS counts Length (nm)

- Quantified number and size of particles in media (growth medium, hemolymph)
- Measured accumulation of nanomaterials into Daphnia (wires and particles)
- lonic silver exposure also resulted in accumulation of silver nanoparticles



Scanlan LD et al. Environ. Sci. Technol.,
2015, 49 (12), pp 7400-7410

Flame-retardants

a/\('\/\
| ~ ’ 7 I | ’
B 1 T g—P— o
F =~ Il 8
]
Br e
0/\<\/\
[#]
L8]
0\/</\/

D. E. F.

Figure 1. Molecular structures of chemical flame-retardants. A. Polybromodiphenyl ether. B. Triphenyl phosphate (TPhP). C. bis(2-ethylhexyl)
tetrabromophthalate (BEH-TEBP). D. bis(2-ethylhexyl) tetrabromobenzoate (EH-TBB). E. Isopropylated triaryl phosphates (ITP). F. bis(2-
ethylhexyl) phthalate (BEHP). B—E are components of Firemaster 550. C and D are components of Firemaster BZ-54. E contains a mixture of

molecules with one, two or three isopropyl-substituted phenol rings.



Questions

* Do the liophilic compounds cause similar
effects? (narcosis)

e Can we use “omics” to elucidate mechanisms?



Methods

e Acute toxicity tests (48 hour, DMSO solvent)
e cDNA microarray at 1/10 LC,

e HOPACH, KEGG, B2G enrichment analysis and
nathway analysis

e Lipidomics (hemolymph) with pentaBDE and
-M550

 Accumulation of pentaBDE and FM550

e Metabolomics (HNMR) with pentaBDE and
FM550




HOPACH




KEGG Pathway Analysis

Table 1. KEGG Pathway Analyses of Gene Transcription Data Show That Exposure to Flame-Retardants Largely Affected

Different Biological Pathways®

biclogjcal pathways affected by exposure to different chemical flame-retardants

KEGG biological pathway
ribosome
glycosphingolipid biosynthesis
spliceosome
pyrimidine metabolism
proteasome
WNT signaling pathway
porphyrin and chlorophyll metabolism
glycosaminoglycan degradation
hedgehog signaling pathway
arginine and proline metabolism
tyrosine metabolism
phenylalanine metabolism

FMS550
0.0681

octaBDE

0.086

pentaBDE
0.030

0.066
0.002
0.074

BZ54

0.089
0.020
0.052
0.052

BEH-TEBP

0.089

0.026

0.083
0.048
0.044

BEHP

0.042

“Numbers in this graph represent the p-value of each analysis. Because annotation of the array is limited, p-values up to 0.1 were included.



Firemaster 550

T e :
<+ translation factor mRNA

A nbosomal mRMNA

A amino and nucleotide sugar metabolism
A fatty acid metabolism

A amino acid synthesis and degradation

Metabaolic Metabolomics

Disruption _JaRIEEIE |
A protein biosynthesis

A aminoacyl-tRNA biosynthesis
A ammonia recychng and nitrogen metabolism
A amino acid synthesis and degradation

Livid

T highly unsaturated fatty acids

/_ . Firemaster® 550

\ Daphnia magna

Patisaul et al. J Biochem Mol Toxicol. 2013 Feb; 27(2): 124-136: FM550 is obesogen in rats
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