Environmental Fate and Aquatic Toxicology of the Synthetic Pyrethroids

Michael Dobbs¹, J Warinton², JM Giddings³, P Hendley² and C. Lam¹

¹Bayer Crop Science, ²Syngenta, ³Compliance Services

On behalf of the PWG member companies: Bayer, DuPont, FMC, Pytech, Syngenta, Valent
Outline

- Environmental Fate
 - Lab data
 - Adsorption
 - Fate-o-cosm
- Aquatic Toxicology
 - Lab data
 - Equilibrium Partitioning Theory
 - Species Sensitivity Distributions
 - Microcosm and Mesocosm Studies
- Sediment Analytical Method
Physical and Chemical Properties of Pyrethroids

Dennis A. Laskowski*

* D A Laskowski Consulting, 4600 Hickory Court, Zionsville, IN 46077.

Contents

I. Introduction 4
II. General Findings 6
 A. Physical Properties 8
 B. Abiotic And Biotic Kinetic Analyses 17
 C. Abiotic Chemical Properties 21
 D. Biotic Chemical Properties 25
III. Bifenthrin 29
 A. Physical Properties 30
 B. Abiotic Chemical Properties 33
 C. Biotic Chemical Properties 34
IV. Cyfluthrin 36
 A. Physical Properties 36
 B. Abiotic Chemical Properties 40
 C. Biotic Chemical Properties 42
V. Cypermethrin 44
 A. Physical Properties 44
 B. Abiotic Chemical Properties 49
 C. Biotic Chemical Properties 51
VI. Deltamethrin and Tralomethrin 53....
Pyrethroid Abiotic - Fate Properties

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Hydrolysis Half Life, days</th>
<th>Photolysis Half life, days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 7</td>
<td>pH 9</td>
</tr>
<tr>
<td>Bifenthrin</td>
<td>Stable</td>
<td>Stable</td>
</tr>
<tr>
<td>Cyfluthrin</td>
<td>183</td>
<td>1.8</td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>274</td>
<td>1.9</td>
</tr>
<tr>
<td>Deltamethrin</td>
<td>Stable</td>
<td>2.2</td>
</tr>
<tr>
<td>Esfenvalerate</td>
<td>Stable</td>
<td>Stable</td>
</tr>
<tr>
<td>Fenpropathrin</td>
<td>555</td>
<td>14</td>
</tr>
<tr>
<td>Lambda-cyhalothrin</td>
<td>Stable</td>
<td>8.7</td>
</tr>
<tr>
<td>Permethrin</td>
<td>Stable</td>
<td>242</td>
</tr>
</tbody>
</table>
Pyrethroid Biotic - Degradation (lab studies)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Aerobic Soil Half Life, days</th>
<th>Anaerobic Soil Half Life, days</th>
<th>Aerobic Aquatic Half Life, days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifenthrin</td>
<td>96</td>
<td>Stable</td>
<td></td>
</tr>
<tr>
<td>Cyfluthrin</td>
<td>12</td>
<td>34</td>
<td>3.0</td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>28</td>
<td>55</td>
<td>7.4</td>
</tr>
<tr>
<td>Deltamethrin</td>
<td>24</td>
<td>29</td>
<td>80</td>
</tr>
<tr>
<td>Es/fenvalerate</td>
<td>39</td>
<td>90</td>
<td>72</td>
</tr>
<tr>
<td>Fenpropathrin</td>
<td>22</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>Lambda-cyhalothrin</td>
<td>43</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Permethrin</td>
<td>40</td>
<td>197</td>
<td></td>
</tr>
</tbody>
</table>
Adsorption to Soils etc.

- K_{oc} values in the range of 100,000 - 1,000,000 ml/g
 - Primary driver for E-fate behavior
- Fast & strong adsorption results in
 - Zero leachability and low runoff potential
 - Pyrethroids will move with soil particles - erosion
 - Rapid removal of chemical from the water column
 - Only short periods of bioavailability in water column
- Interpretation of water residue samples
 - Chemical “detected” in water samples may well be bound to suspended sediment or DOC
 - Must know the context of “detects”
 - “Total” or “dissolved”
Pyrethroid adsorption to organic carbon is extensive
- Sediment Kocs typically 100,000+
- 99%+ adsorbed
- Equilibrium between pore water & sediment reached in a few days
Factors Impacting Pyrethroid Interactions in Aquatic Systems - a complex system

Runoff Entry - pyrethroid almost exclusively adsorbed to Sediment

Drift Entry - pyrethroid in spray droplets

Uptake & metabolism in plants

Total Suspended Solids content - rapidly adsorbs “free” chemical

Microbial degradation of chemical in water phase

Microbial degradation of chemical in sediment

LIGHT
Fate-o-cosms: Pyrethroid fate in the environment?

Distribution of \textit{lambda}-cyhalothrin between water, aquatic plants and sediment in static ditch microcosms systems 0.43 m3

L-cyhalothrin applied into the water column

Rapid decline in water column concentrations

Sediment & plant concentrations peak in 1-3 days, then decline – sorption & degradation

Relatively low proportion of dose reaching the sediment

Key Aquatic Dissipation Processes

- In aquatic ecosystems
 - Rapid binding to plants, sediments and organic matter
 - Greatly reduces exposure of water-column and sediment organisms to the bioavailable fraction
- Metabolism in/on plants causes much faster degradation in addition to microbial processes in soil and aquatic phase.
 - Only chemical which desorbs into aqueous phase can exert biological effect
- Majority of pyrethroid in sediment phase
Pyrethroid Aquatic Toxicity Studies

- PWG review of aquatic tox laboratory data
 - Covering 9 synthetic pyrethroids from introduction in mid 70’s
 - >600 reports from registrants & open literature
 - >3000 endpoints covering >220 different aquatic species

- Evaluation criteria applied & most reliable species endpoints for each pyrethroid listed
 - 650 acute values
 - 60 chronic values

- What is the best way to utilize this data set?
Equilibrium Partitioning Theory (EqP)

Nonionic Organic Chemicals

- Tool to normalize toxicity results across sediments due to the high variability in bioavailability sediments
 - Developed based on field and lab observations (e.g., PAHs)
- Normalizes toxicity based on the organic content of the sediment using Koc
- Water column toxicity data can be used to predict sediment toxicity
- Not a perfect model - expect to be within 2 or 3x of actual value - has limits
Sediment Toxicity Data for Pyrethroids

L(E)C50 values for sediment organisms in ug/g sediment organic carbon

<table>
<thead>
<tr>
<th>Organism</th>
<th>Bif</th>
<th>Cyf</th>
<th>L-cy</th>
<th>Cyp</th>
<th>Del</th>
<th>Esf</th>
<th>Per</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyalella azteca*</td>
<td>0.52</td>
<td>1.1</td>
<td>0.45</td>
<td>0.36</td>
<td>0.79</td>
<td>1.5</td>
<td>10</td>
</tr>
<tr>
<td>Leptocheirus plumulosus</td>
<td>5.9</td>
<td>0.85</td>
<td></td>
<td>1.6</td>
<td></td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Asellus aquaticus</td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
<td></td>
<td></td>
<td>9.0</td>
</tr>
<tr>
<td>Chironomus tentans</td>
<td>45</td>
<td>5.1</td>
<td>5.3</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomus riparius</td>
<td></td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

EqP Applied to Pyrethroid Sediment Toxicity Data

<table>
<thead>
<tr>
<th>Exposure type</th>
<th>1% OC sediment</th>
<th>3% OC sediment</th>
<th>13% OC sediment</th>
<th>Geometric mean</th>
<th>Water alone (^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sediment effect conc. (ug/kg)</td>
<td>Sediment effect conc. (ug/g OC)</td>
<td>Water effect conc. (ng/L)(^a)</td>
<td>Sediment effect conc. (ug/kg)</td>
<td>Sediment effect conc. (ug/g OC)</td>
</tr>
<tr>
<td>Hyalella 10 day LC(_{50})</td>
<td>3.6</td>
<td>0.36</td>
<td>1.2</td>
<td>13</td>
<td>1.3</td>
</tr>
<tr>
<td>Chironomus 10 day LC(_{50})</td>
<td>18</td>
<td>0.60</td>
<td>1.9</td>
<td>67</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>0.13</td>
<td>0.6</td>
<td>62</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>na</td>
<td>na</td>
<td>1.1</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>na</td>
<td>na</td>
<td>3.6</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

\(^a\) Based on Koc of 310,000 for cypermethrin (Laskowski, 2002)

\(^b\) Study endpoint 96 hour EC\(_{50}\)
Pyrethroids and EqP Theory

- Pyrethroid \textit{H.azteca} and \textit{C. tentans} sediment toxicity data are in agreement with EqP Theory
- Organic carbon is a reasonable basis for normalizing sediment effect concentrations across sediments
- Calculated aqueous concentrations adequately represents exposure in sediment
- Can normalize sediment results for comparison water only toxicity studies
Species Sensitivity Distributions – a tool for interpretation

- Y-axis is a probability scale showing cumulative frequency.
- Can estimate % species affected at concn X or concn at which X% of species affected.
- The flatter the slope, the wider the sensitivity distribution.

Cumulative probability

96 h LC$_{50}$ (ug l$^{-1}$)

Less Sensitive

Probability $Y = 0.6982 + 1.8635 \log X$

$r^2 = 0.99 \ P < 0.0001$
Relative Sensitivities of Arthropod Species (Cypermethrin)

- Cumulative percent rank
- LC/EC50 (ug/L)

Species:
- Hyalella azteca
- Americanus bahia
- Hyalella azteca
- 'Water-column' arthropods
- 'Epibenthic/benthic' arthropods
- Cumulative percent rank
- LC/EC50 (ug/L)
Pyrethroid Species Sensitivity Distributions

Fish – water exposure data

Cumulative Percent of Species Affected

LC50 (µg/L)

Cypermethrin
Esfenvalerate
Lambda-Cyhalothrin
Permethrin
Deltamethrin
Fenpropathrin
Pyrethroid Species Sensitivity Distributions

Arthropods – water exposure data

- Cypermethrin
- Esfenvalerate
- Lambda-Cyhalothrin
- Permethrin
- Bifenthrin
- Deltamethrin
- Fenpropathrin
- Cyfluthrin

Cumulative percent of species affected vs. LC50 (µg/L)
Implications from Species Sensitivity Distributions (SSDs)

- All the synthetic pyrethroids have a similar spectrum of toxicity across aquatic species.
- Fish consistently less sensitive than arthropods.
- No inherent difference in sensitivity of water-column vs. epibenthic/benthic arthropods.
Pyrethroid Chronic Toxicity – Lowest NOECs (water-only, µg/L)

<table>
<thead>
<tr>
<th>Pyrethroid</th>
<th>Fish</th>
<th>Crustacean</th>
<th>Insect</th>
<th>Mollusk</th>
<th>Algae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifenthrin</td>
<td>0.012 (2)</td>
<td>0.0011 (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyfluthrin</td>
<td>0.025 (3)</td>
<td>0.0002 (2)</td>
<td></td>
<td>991 (1)</td>
<td></td>
</tr>
<tr>
<td>λ-Cyhalothrin</td>
<td>0.031 (2)</td>
<td>0.0002 (2)</td>
<td>1000 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>0.077 (1)</td>
<td>0.0004 (2)</td>
<td>1300 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltamethrin</td>
<td>0.017 (4)</td>
<td>0.0010 (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esfenvalerate</td>
<td>0.018 (5)</td>
<td>0.0004 (3)</td>
<td>0.79 (1)</td>
<td>1000 (4)</td>
<td></td>
</tr>
<tr>
<td>Fenpropathrin</td>
<td>0.091 (1)</td>
<td>0.0120 (2)</td>
<td>0.33 (1)</td>
<td>0.87 (6)</td>
<td></td>
</tr>
<tr>
<td>Permethrin</td>
<td>0.140 (3)</td>
<td>0.0078 (2)</td>
<td>0.030 (2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parentheses () = number studies available
Microcosms, Mesocosms and Field Studies

- **Experimental Ecosystems**
 - One of the most sophisticated tools available to aquatic toxicologists
 - Study impacts on multiple species together
 - Along with interactions between species
 - Environmentally realistic conditions

- Available for all pyrethroids
Summary of Cypermethrin Effects in Mesocosms

<table>
<thead>
<tr>
<th>Concentration (ng/L)</th>
<th>Cladocera</th>
<th>Copepoda</th>
<th>Rotifera</th>
<th>Chironomidae</th>
<th>Ephemeroptera</th>
<th>Trichoptera</th>
<th>Odonata</th>
<th>Amphipoda</th>
<th>Hydracarina</th>
<th>Oligochaeta</th>
<th>Gastropoda</th>
<th>Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

- Red: Decline, no recovery
- Orange: Decline, recovery
- Blue: No effect
- Gray: Increase

Giddings, et al, 2001 ETC 20:660
Comparison of Mesocosm NOEC and LOEC with LC50 Distributions (Cypermethrin)

Giddings, et al, 2001 ETC 20:660
Aquatic Field Studies

- Useful tools for studying the effect and fate of pyrethroids under environmental realistic conditions
- Aquatic toxicity
 - Trends are relatively consistent across pyrethroids
 - See effects on sensitive species, typically followed by recovery
 - Trend in sensitivity is from amphipods, isopods, midges, mayflies, copepods, and cladocerans to fish, snails, oligochaetes, and rotifers
 - High inherent toxicity of pyrethroids in standard laboratory toxicity tests are mitigated under field conditions
 - Single species laboratory data is protective of field conditions
Pyrethroid Sediment Analytical Method

- Freshwater and estuarine sediment trace residue method for 8 of the most widely-used pyrethroid insecticides
 - Bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, lambda-cyhalothrin and permethrin
- Extraction and clean-up techniques are simple and straightforward
- The limit of quantitation (LOQ) is:
 - 1 µg/kg for permethrin and 0.1 µg/kg for others
- Validated in an independent lab
 - Morse Labs
Sediment Extraction and Clean-up

- Extracted 50 g of sediment by shaking with a mixture of methanol/water and hexane for 1 hour
 - Pyrethroids extracted from sediment by the aqueous methanol
 - Extracted pyrethroids are then partitioned into hexane layer.
 - Centrifuged the samples to separate aqueous and organic layers

- For clean-up load hexane extract on to silica Bond Elut™ solid phase extraction cartridge
 - Pyrethroids will be retained on cartridge.
 - Washed with hexane
 - Eluted the pyrethroids with a solution of hexane/diethyl ether
 - Concentrate eluatrate and re-dissolved in 1 mL of an acetone + 0.1% peanut oil solution

- Residue quantitation by GC-MS/NICI
Method Validation Data for Freshwater Sediment

LOQ spike at 0.1 ug/kg - LOQx10 1 ug/kg for 7 cpds,

(1 and 10 ug/kg for permethrin)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Bifenthrin</th>
<th>Fenpropathrin</th>
<th>Lambda-cyhalothrin</th>
<th>Permethrin</th>
<th>Cyfluthrin</th>
<th>Cypermethrin</th>
<th>Esfvenalervate</th>
<th>Deltamethrin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>ND</td>
<td>ND</td>
<td><0.1 ug/kg</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td><0.1 ug/kg</td>
<td>ND</td>
</tr>
<tr>
<td>Control</td>
<td>ND</td>
<td>ND</td>
<td><0.1 ug/kg</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td><0.1 ug/kg</td>
<td>ND</td>
</tr>
<tr>
<td>LOQ spike 1</td>
<td>103%</td>
<td>102%</td>
<td>84%</td>
<td>97%</td>
<td>107%</td>
<td>107%</td>
<td>75%</td>
<td>88%</td>
</tr>
<tr>
<td>LOQ spike 2</td>
<td>106%</td>
<td>94%</td>
<td>99%</td>
<td>105%</td>
<td>102%</td>
<td>102%</td>
<td>82%</td>
<td>78%</td>
</tr>
<tr>
<td>LOQ spike 3</td>
<td>107%</td>
<td>107%</td>
<td>94%</td>
<td>94%</td>
<td>107%</td>
<td>105%</td>
<td>82%</td>
<td>84%</td>
</tr>
<tr>
<td>LOQ spike 4</td>
<td>107%</td>
<td>108%</td>
<td>93%</td>
<td>101%</td>
<td>104%</td>
<td>73%</td>
<td>86%</td>
<td>86%</td>
</tr>
<tr>
<td>LOQ spike 5</td>
<td>109%</td>
<td>107%</td>
<td>108%</td>
<td>108%</td>
<td>110%</td>
<td>104%</td>
<td>84%</td>
<td>102%</td>
</tr>
<tr>
<td>Mean Recovery</td>
<td>106%</td>
<td>104%</td>
<td>93%</td>
<td>100%</td>
<td>106%</td>
<td>106%</td>
<td>78%</td>
<td>88%</td>
</tr>
<tr>
<td>RSD</td>
<td>2.1</td>
<td>5.7</td>
<td>11.0</td>
<td>5.2</td>
<td>2.6</td>
<td>2.9</td>
<td>6.0</td>
<td>10.1</td>
</tr>
<tr>
<td>10x LOQ spike 1</td>
<td>100%</td>
<td>110%</td>
<td>106%</td>
<td>97%</td>
<td>111%</td>
<td>111%</td>
<td>105%</td>
<td>104%</td>
</tr>
<tr>
<td>10x LOQ spike 2</td>
<td>111%</td>
<td>115%</td>
<td>121%</td>
<td>124%</td>
<td>127%</td>
<td>130%</td>
<td>122%</td>
<td>116%</td>
</tr>
<tr>
<td>10x LOQ spike 3</td>
<td>109%</td>
<td>116%</td>
<td>113%</td>
<td>107%</td>
<td>119%</td>
<td>120%</td>
<td>117%</td>
<td>111%</td>
</tr>
<tr>
<td>10x LOQ spike 4</td>
<td>102%</td>
<td>108%</td>
<td>104%</td>
<td>93%</td>
<td>108%</td>
<td>105%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>10x LOQ spike 5</td>
<td>115%</td>
<td>116%</td>
<td>118%</td>
<td>117%</td>
<td>120%</td>
<td>122%</td>
<td>115%</td>
<td>109%</td>
</tr>
<tr>
<td>Mean Recovery</td>
<td>107%</td>
<td>113%</td>
<td>112%</td>
<td>108%</td>
<td>117%</td>
<td>118%</td>
<td>112%</td>
<td>108%</td>
</tr>
<tr>
<td>RSD</td>
<td>5.8</td>
<td>3.3</td>
<td>6.6</td>
<td>12.1</td>
<td>6.5</td>
<td>8.3</td>
<td>8.4</td>
<td>6.1</td>
</tr>
</tbody>
</table>
Analytical Method Conclusions

- The limit of quantitation (LOQ) is 1 µg/kg for permethrin and 0.1 µg/kg for all others
 - LOD - 0.01 - 0.06 µg/kg (permethrin 0.2 ug/kg)
- Mean validation recoveries for all pyrethroids were between 78-118% with RSD values of ≤13%
- The methodology is suitable for analysis of ultra-trace residues of widely used pyrethroid insecticides in CA freshwater and marine sediments
- The method is simple and cost-effective to carry out and has been successfully used for routine analyses in commercial laboratories
 - Batch of 10 to 12 samples can be prepared, extracted and analyzed in 7 man hours
 - Cost < $300 per sample
 - Run routinely for > 150 sediment samples from wide range of central valley locations
 - Low to Moderate equipment cost for NCI detector
Analytical next steps

- Widely available sediment methods
 - Move to performance based standards of acceptability
 - Ensure standards are available, meaningful (e.g. positional isomer ratios) & well characterized
 - Round Robin study needed – more EPA approved labs who can easily perform sediment analyses.
 - Will require an (aged) “standard sediment” sample
 - Also for SPME negligible depletion methodology

- Recommended Analytical Approaches
 - Measure TSS in all pyrethroid water phase analyses
 - Measure %OM & % dry weight for sediment studies
 - Report residues on a dry weight basis
 - Perform SPME analysis for sediment samples to complement the “total” method
E-fate and Ecotox Summary

- The bioavailability of pyrethroids in the environment must be considered when evaluating pyrethroid toxicity and exposure data.
- Equilibrium partitioning theory works for the pyrethroids.
- There is abundant information on pyrethroid fate and toxicity in aquatic systems.
 - Including environmentally realistic large scale field studies.
- No inherent difference in sensitivity between water-column and sediment organisms.
 - Data from water column organisms can be used to predict effects to sediment dwellers.
Path Forward

- A large body of E-fate and Ecotox data is available
 - The challenge is using it all!
- Target additional studies to area’s that will help resolve the risk and regulatory questions
 - Have a clearly defined Management Goal
PWG Contacts

- **Member Companies**
 - Bayer, DuPont, FMC, Pytech, Syngenta, Valent

- **On the West Coast**
 - Jim Wells of Environmental Solutions Group
 - jwells@esgllc.net
 - Scott Kohne of Bayer
 - scott.kohne@bayercropscience.com

- **On the East Coast**
 - Fred Pearson of Syngenta
 - fred.pearson@syngenta.com
 - Michael Dobbs of Bayer
 - michael.dobbs@bayercropscience.com