1. Study highlights

- **Study Number:** 299
- **Title:** Ambient Monitoring in Urban Areas in Northern California for FY 2016-2017
- **Author:** Michael Ensminger

- **County:** Alameda, Contra Costa, Placer, Sacramento, Santa Clara
- **Waterbody/Watershed:** Alameda Creek watershed (WS) Arcade Creek WS, Coyote Creek WS, Pleasant Grove Creek WS, South San Ramon Creek WS, Upper American River WS

- **Land Use Type:**
 - ☒ Urban
 - ☐ Forested
 - ☐ Mixed
 - ☐ Other

- **Water body type:**
 - ☒ Storm drain outfall
 - ☒ Creek
 - ☐ River
 - ☐ Pond
 - ☐ Lake

- **Objectives:**
 1) Identify the presence and concentrations of pesticide contamination in urban waterways;
 2) Determine the toxicity of water samples at selected monitoring sites;
 3) Evaluate the magnitude of measured concentrations relative to water quality or aquatic toxicity thresholds;
 4) Evaluate the effectiveness of CDPR’s surface water regulation Section 6970 through long term (multi-year) monitoring at selected sampling locations.

- **Sampling period:** July 1, 2016 – June 30, 2017

- **Pesticides monitored:**
 2,4-D, azoxystrobin, bensulide, bifenthrin, bromacil, carbaryl, chlorantraniliprole, chlorpyrifos, cyfluthrin, cypermethrin, deltamethrin, desulfuryl fipronil, desulfuryl fipronil amide, diazinon, dicamba, diuron, fenpropathrin (sediments only), esfenvalerate, fipronil, fipronil amide, fipronil sulfide, fipronil sulfone, imidacloprid, indoxacarb, isoxaben, lambda cyhalothrin, malathion, MCPA, oryzalin, oxadiazon, oxyfluorfen, pendimethalin, permethrin, prodiamine, prometon, propiconazole, pyraclostrobin, pyriproxyfen, simazine, S-metolachlor, tebuthiuron, triclopyr, and trifloxystrobin

- **Major findings:**

INSECTICIDES. In water samples, bifenthrin was the most frequently detected insecticide (74% detection frequency [DF]; Table 1). This DF is similar to what has been reported in previous years and bifenthrin has been consistently the most detected insecticide in Northern California urban monitoring. Other pyrethroids were detected less frequently: cyfluthrin (29% DF), deltamethrin, and permethrin (24% DF each). Deltamethrin detections have been increasing in past four years, whereas the four year DF
average for cyfluthrin and permethrin are similar to what was observed in FY15/16 monitoring results. Of other pyrethroids monitored, lambda-cyhalothrin was rarely detected and esfenvalerate and cypermethrin were never detected in water samples Northern California urban monitoring. Generally, all pyrethroids, except for cyfluthrin, were detected at concentrations higher than their minimum US EPA benchmark (BM) (Table 1), making them potentially toxic to sensitive aquatic organisms. Bifenthrin is of highest concern for potential toxicity (Table 3).

Imidacloprid was the second highest detected insecticide; it was detected in 59% of the water samples. Imidacloprid detections have been increasing in Northern California urban monitoring, almost doubling since FY 13/14. The US EPA BM has recently been updated for this pesticide, and all imidacloprid detections were above its lowest BM for chronic invertebrate toxicity of 0.01 µg/L. The current analytical reporting limit is higher than this new BM; therefore, trace detections (an additional 21% DF) could also be above imidacloprid’s lowest BM.

Fipronil was almost detected a frequency as imidacloprid, with 50% DF. In Northern California’s FY15/16 report, it was noted that fipronil detections were decreasing; however, in FY16/17 this trend has reversed. CDFA has a lower RL for fipronil and degradates that accounts for some, but not all, of the increased DF. All fipronil’s detections were above its lowest US EPA BM. Three degradates were detected; sulfone (56% DF), desulfinyl (21% DF), and amide (12% DF). Only one sulfone degradate was detected above its US EPA BM. There is no BM for the amide degradate, but all detections were at or above fipronil’s BM.

Malathion and carbaryl were detected twice; malathion’s detections were above its lowest US EPA BM. There were no detections of chlorantraniliprole, chlorpyrifos, diazinon, indoxacarb, or pyriproxyfen in this study.

HERBICIDES. 2,4-D was the most frequently detected herbicide (82% DF). Three other herbicides with the same mode of action (MOA; dicamba, MCPA, and triclopyr) were also frequently detected (50%, 38%, and 53% DF, respectively). In addition to herbicides with this MOA, two others were also frequently detected: diuron and pendimethalin (65% and 19% DF, respectively). DPR historically monitored herbicides bromacil, oryzalin, oxyfluorfen, prodiamine, prometon, simazine, and tebuthiuron were rarely, or never detected in FY 16/17. With CDFA’s new LC multi-analyte screen, bensulide, isoxaben, oxadiazon, and S-metolachlor were added to our monitoring program. Of these, only isoxaben and oxadiazon were detected (17% and 23% DF, respectively), all below their US EPA BM.

2,4-D, dicamba, diuron, MCPA, pendimethalin, and triclopyr are routinely detected in the Northern California urban monitoring program, some with fairly high DFs. However, these detections never exceed minimum US EPA BMs (except for one 2,4-D detection in FY13/14). These herbicides are included to the monitoring program for trend analysis; upcoming data analysis of these herbicides will determine future monitoring needs.
FUNGICIDES. With the new LC multi-analyte screen, four fungicides were added to our monitoring program: azoxystrobin, propiconazole, pyraclostrobin, and trifloxystrobin. Two were detected: azoxystrobin and propiconazole (7% DF each). These were not detected above their respective US EPA BMs.

OTHER. Rain events compared to non-storm (dry season) events: Detections more than doubled during rain events. Biggest differences were with fipronil, diuron, MCPA, triclopyr, and bifenthrin, having between 50% - 76% higher DFs during rain events.

Storm drain outfalls compared to receiving waters: Overall detections almost doubled at storm drain outfall sites (40% DF) when compared to receiving water sites (23% DF).

San Francisco Bay area (SFB) compared to Sacramento area (SAC; receiving waters only): SFB was only sampled twice, a fall rain event and a June dry event. During the fall rain event, the overall DF between the two areas was about the same. However, during dry monitoring in June, SAC had an overall higher DF than SFB (20% and 3% DF, respectively).

TOXICITY. UC Davis Aquatic Health Program conducted 96-hour water column toxicity tests with *Hyalella azteca* from samples collected from selected sites in SAC. In the first flush rain event in October, water from three storm drain outfalls and one receiving water site (all in Roseville) was tested for toxicity. In the lab tests, *H. azteca* survival ranged from 0 - 8% at these sites. At these same sites during the June dry sampling, only one storm drain outfall had toxicity (0% survival); water from the other sites in Roseville did not show toxicity. In Folsom, toxicity tests were conducted from water collected during the first flush rain event and in a storm in April 2017. There was no apparent toxicity during these tests as *H. azteca* survivability was equal to the controls.

SEDIMENTS (see Table 2). Sediments were collected at five monitoring sites in SAC and analyzed for eight pyrethroids (bifenthrin, cyfluthrin, cypermethrin, deltamethrin, fenpropathrin, esfenvalerate, lambda-cyhalothrin, permethrin). All four storm drain outfall sites had sediment that contained > 1 toxicity unit (TU); ranging from 1.8 – 16 TUs. A receiving water site in Roseville had 2.4 and 0.7 TUs in June 2016 and June 2017, respectively (June 2016 data is reported here as this data was not available for FY15/16 report). As observed in previous years, bifenthrin accounted for the largest percentage (79%) of TUs, distantly followed lambda cyhalothrin, cypermethrin, deltamethrin, and cyfluthrin (4 - 6% of the TU total). All other pyrethroids contributed < 1% of the total TUs.

- Recommendations for pesticides that need a CDFA analytical method (from SWMP):
 - Dithiopyr, PCNB, sulfometuron-methyl
2. Pesticide detection frequency

Table 1. Pesticides detected in water. Complete data set in Appendix.

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Number of samples</th>
<th>Number of detections</th>
<th>Reporting Limit (µg/L)</th>
<th>Detection frequency (DF) (%)</th>
<th>Lowest USEPA benchmark (BM) (µg/L)*</th>
<th>Number of BM exceedances</th>
<th>BM exceedance frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>34</td>
<td>28</td>
<td>0.05</td>
<td>82</td>
<td>13.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>30</td>
<td>2</td>
<td>0.02</td>
<td>7</td>
<td>44 IC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bensulide</td>
<td>30</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>290 IA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bifenthrin</td>
<td>34</td>
<td>25</td>
<td>0.001</td>
<td>74</td>
<td>0.0013 IC</td>
<td>24</td>
<td>71</td>
</tr>
<tr>
<td>Bromacil</td>
<td>34</td>
<td>1</td>
<td>0.02</td>
<td>3</td>
<td>6.8 NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>20</td>
<td>2</td>
<td>0.05</td>
<td>10</td>
<td>0.5 IC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chlorantraniliprole</td>
<td>30</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>4.5 IC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>34</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>0.04 IC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cyfluthrin</td>
<td>34</td>
<td>10</td>
<td>0.002</td>
<td>29</td>
<td>0.0074 IC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>34</td>
<td>0</td>
<td>0.005</td>
<td>0</td>
<td>0.069 IC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Deltamethrin</td>
<td>34</td>
<td>8</td>
<td>0.005</td>
<td>24</td>
<td>0.004 IC</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Desulfynil fipronil</td>
<td>34</td>
<td>7</td>
<td>0.01</td>
<td>21</td>
<td>0.59 FC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Desulfynil fipronilamide</td>
<td>34</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>NA --</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Diazinon</td>
<td>4</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0.105 IA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dicamba</td>
<td>34</td>
<td>17</td>
<td>0.05</td>
<td>50</td>
<td>61 NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diuron</td>
<td>34</td>
<td>22</td>
<td>0.02</td>
<td>65</td>
<td>2.4 NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Esfenvalerate</td>
<td>16</td>
<td>0</td>
<td>0.005</td>
<td>0</td>
<td>0.017 IC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fipronil</td>
<td>34</td>
<td>17</td>
<td>0.01</td>
<td>50</td>
<td>0.011 IC</td>
<td>17</td>
<td>50</td>
</tr>
<tr>
<td>Fipronil amide</td>
<td>34</td>
<td>4</td>
<td>0.01</td>
<td>12</td>
<td>NA --</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fipronil sulfide</td>
<td>34</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0.11 IC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fipronil sulfone</td>
<td>34</td>
<td>19</td>
<td>0.01</td>
<td>56</td>
<td>0.037 IC</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>34</td>
<td>20</td>
<td>0.02</td>
<td>59</td>
<td>0.01 IC</td>
<td>20</td>
<td>59</td>
</tr>
<tr>
<td>Indoxacarb</td>
<td>30</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>75 IC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Isoxaben</td>
<td>30</td>
<td>5</td>
<td>0.02</td>
<td>17</td>
<td>10 VA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lambda Cyhalothrin</td>
<td>34</td>
<td>2</td>
<td>0.005</td>
<td>6</td>
<td>0.002 IC</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Malathion</td>
<td>34</td>
<td>2</td>
<td>0.02</td>
<td>6</td>
<td>0.035 IC</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>MCPA</td>
<td>34</td>
<td>13</td>
<td>0.05</td>
<td>38</td>
<td>170 VA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oryzalin</td>
<td>34</td>
<td>1</td>
<td>0.035</td>
<td>3</td>
<td>30.8 VA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oxadiazon</td>
<td>30</td>
<td>7</td>
<td>0.02</td>
<td>23</td>
<td>5.2 NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oxyfluorfen</td>
<td>31</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>0.33 VA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pendimethalin</td>
<td>31</td>
<td>6</td>
<td>0.05</td>
<td>19</td>
<td>5.2 NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Permethrin</td>
<td>34</td>
<td>8</td>
<td>0.005</td>
<td>24</td>
<td>0.0014 IC</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Pesticide</td>
<td>Number of samples</td>
<td>Number of detections</td>
<td>Reporting Limit (µg/L)</td>
<td>Detection frequency (DF) (%)</td>
<td>Lowest USEPA benchmark (BM) (µg/L)*</td>
<td>Number of BM exceedances</td>
<td>BM exceedance frequency (%)</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Prodiamine</td>
<td>31</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>1.5 IC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prometon</td>
<td>9</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>98 NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>30</td>
<td>2</td>
<td>0.02</td>
<td>7</td>
<td>21 NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pyraclostrobin</td>
<td>30</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>1.5 NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pyriproxyfen</td>
<td>30</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>0.015 IC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Simazine</td>
<td>34</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>2.24 NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S-Metolachlor</td>
<td>30</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>8 NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tebuthiuron</td>
<td>4</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>50 NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>34</td>
<td>18</td>
<td>0.05</td>
<td>53</td>
<td>5900 NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trifloxystrobin</td>
<td>30</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>2.76 IC</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*FA, fish acute; FC, fish chronic; IA, invertebrate acute; IC, invertebrate chronic; NA, non-vascular acute; VA, vascular acute

Table 2. Pesticides detected in sediment. Complete data set in Appendix.

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Number of samples</th>
<th>Number of detections</th>
<th>Detection frequency (%)</th>
<th>LC50 (µg/g OC)*</th>
<th>Detection frequency of sediments ≥ 1 TU*</th>
<th>Median TUs*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifenthrin</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>0.52</td>
<td>90</td>
<td>3.9</td>
</tr>
<tr>
<td>Cyfluthrin</td>
<td>10</td>
<td>9</td>
<td>90</td>
<td>1.08</td>
<td>0</td>
<td>0.17</td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>10</td>
<td>8</td>
<td>80</td>
<td>0.38</td>
<td>10</td>
<td>0.26</td>
</tr>
<tr>
<td>Deltamethrin</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>0.79</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>Fenpropathrin</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Esfenvalerate</td>
<td>10</td>
<td>3</td>
<td>30</td>
<td>1.54</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Lambda Cyhalothrin</td>
<td>10</td>
<td>7</td>
<td>70</td>
<td>0.45</td>
<td>10</td>
<td>0.26</td>
</tr>
<tr>
<td>Permethrin</td>
<td>10</td>
<td>7</td>
<td>70</td>
<td>0.38</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>Resmethrin</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

* Sediment Toxicity Units (TUs) are calculated using the formula, use TU = C/LC50 * % TOC * 10, where C = concentration (µg/kg dry weight), LC50 is derived from accepted published values (from Amweg et al. 2005, Toxicol. Chem. 24:966-972; Amweg and D.P. Weston 2007, Environ. Toxicol. Chem. 26:2389-2396; Maund et al. 2002, Environ. Toxicol. Chem., 21:9-15), % TOC is stated in the sediment results Appendix III, and 10 is a conversion factor. One TU is equal to the LC50. If using other LC50 values, list value and reference.

† Includes one sample from receiving water site PGC040 that was not analyzed until FY16_17.
3. Tracking Benchmark Exceedances (BME) or Sediment Toxicity (TU)

Table 3. For further data analysis: AT ALL SITES, pesticides that have \(\geq 10\% \) aquatic benchmark exceedances [BME] [Table 1] or \(\geq 1 \) sediment toxicity units [TU] [Table 2]) for 3 consecutive years are recommended for further detailed data analysis (Ambient Urban Monitoring Strategy SOP [http://cdpr.ca.gov/docs/emon/pubs/protocol.htm?filter=surfwater])

<table>
<thead>
<tr>
<th>Area</th>
<th>Pesticide</th>
<th>Water</th>
<th>Sediment</th>
<th>Current year (i)</th>
<th>i - 1</th>
<th>i - 2</th>
<th>Last written evaluation</th>
<th>Further data analysis (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern CA</td>
<td>Bifenthrin</td>
<td>X</td>
<td></td>
<td>71%</td>
<td>75%</td>
<td>67%</td>
<td>2013</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Deltamethrin</td>
<td>X</td>
<td></td>
<td>24%</td>
<td>19%</td>
<td>11%</td>
<td>2013</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Permethrin</td>
<td>X</td>
<td></td>
<td>24%</td>
<td>11%</td>
<td>46%</td>
<td>2013</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Fipronil</td>
<td>X</td>
<td></td>
<td>50%</td>
<td>29%</td>
<td>43%</td>
<td>2015</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Imidacloprid</td>
<td>X</td>
<td></td>
<td>(\geq 59%)</td>
<td>(\geq 44%)</td>
<td>(\geq 17%)</td>
<td>(none)</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Bifenthrin</td>
<td>X</td>
<td></td>
<td>3.9 TU</td>
<td>7.4 TU</td>
<td>6.7 TU</td>
<td>2013</td>
<td>Y</td>
</tr>
</tbody>
</table>

^A \(\geq \) is indicated because the reporting limit is above the lowest imidacloprid BM. Trace detections may be above the BM.
4. QC

Table 4. Laboratory Quality Control (QC) Summary

<table>
<thead>
<tr>
<th>QC Type</th>
<th>Water Samples</th>
<th>Sediment Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Number</td>
<td>Number of QC out of control</td>
</tr>
<tr>
<td>Lab Blanks</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Matrix Spikes/Duplicates</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Laboratory Control Spikes/Duplicates</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blind Spikes</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Surrogate Spikes</td>
<td>79</td>
<td>12</td>
</tr>
</tbody>
</table>

Explain out of control QC and interpretation of data:
The first time CDFA’s new LC multi-analyte screen was use for storm samples, nine imidacloprid-d4 and three atrazine-d5 surrogates had low recoveries. Higher than normal levels of sediment and CDFA’s first time to use these two surrogates may have contributed to the low recoveries. Low recoveries do not affect the DF of the detected analytes, although reported concentrations may have been higher. However, other analytes may have been in these samples; most likely trace detections could have been in concentrations > RL. This likely affected azoxystrobin, chlorantraniliprole, propiconazole, and fipronil amide; all were detected at trace levels in most of the 9 samples. Of these, only chlorantraniliprole was not detected at other sampling dates.

5. Supporting Information

Submit the following Supporting Information combined into one PDF file with your report:

Index of Supporting Information
Appendix I. Study protocol
Appendix II. Sampling site information and pictures
Appendix III. Water quality data
Appendix IV. Water or sediment monitoring data
Appendix V. Aquatic toxicity data
Appendix VI. Analytical methods