Polyethylene Passive Samplers for Quantifying Dissolved Hydrophobic Organic Contaminants in Aquatic Environments

Rachel G. Adams
Department of Civil Engineering & Environmental Science
Loyola Marymount University

Rainer Lohmann, Loretta Fernandez, John MacFarlane, Philip Gschwend
Massachusetts Institute of Technology

Wenjian Lao‡, Jaime Sayre†, Keith Maruya‡
‡Southern California Coastal Water Research Project
†University of Southern California

June 10, 2009
Outline

• Introduction & Motivation
• Hydrophobic Organic Contaminants & Regulatory Concern
• Partitioning and Time to Equilibrium
• PED Field Measurements: Boston Harbor
• PED & SPME Laboratory Measurements
• Pyrethroids
• Conclusions
Introduction & Motivation: Dissolved Phase & Passive Samplers

Freely Dissolved Phase

- This freely dissolved fraction is of interest as it is the bioavailable fraction (does not include DOM-bound fraction)

- **Low concentrations make it difficult to measure chemicals!**

Passive Samplers

- Mussel Watch

- Semipermeable Membrane Devices (SPMDs)

- Solid Phase Microextraction (SPMEs)

- **Polyethylene Devices (PEDs):** Passive samplers used to measure the activity or fugacity of HOCs in the environment based on the partitioning of HOCs between polyethylene & water.
Hydrophobic Organic Contaminants (HOCs)

Polycyclic Aromatic Hydrocarbons (PAHs)
- sources:
 - combustion of fossil fuels and wood (non-point source)
 - oil spills (point source)
- toxic, carcinogenic, & mutagenic

Polychlorinated Biphenyls (PCBs)
- manufactured in the U.S. between 1929 & 1979 as insulating fluids in transformers and capacitors (tradename: Arochlor)
- estimated that General Electric released between 200,000 to 1.3 million pounds of PCBs into the Hudson River between the 1940’s and 1977 (EPA, 2000)
- toxic (neurological, developmental, reproductive problems) and carcinogenic
Hydrophobic Organic Contaminants (HOCs)

Dichloro-Diphenyl-Trichloroethane (DDT) and Metabolites (DDE, DDD)

- insecticide used during WWII and after
- banned in the US in 1972—now world-wide (with exception for vector control—India & China)
- estimated that Montrose Chemical released (via Joint Power Pollution Control Plant) 1700 tons of DDT from the late 1950s to early 1970s on Palos Verdes shelf
- toxic, thinning of eggshells

Chlorinated Pesticides

- chlordane and heptachlor
- insecticide banned in U.S. in 1988
Hydrophobic Organic Contaminants (HOCs)

Pyrethroids

• current-use synthetic insecticides

• uses for agricultural crops, nurseries, urban structures and landscaping, home/garden

• In 2004, 1.4 million lbs sold in California (Spurlock & Lee, 2008)

• acute toxicity to aquatic organisms ($LC_{50} = 0.4 \mu g/L; Daphnia magna$)
Regulatory & Environmental Concerns

- PAHs, PCBs, DDT, chlordane are all contaminants of concern
 - California’s 303(d) List of Impaired Water Bodies
 - Total Maximum Daily Loads

- Pyrethroids emerging contaminants of concern

- Ballona Creek Estuary TMDL recommends improved water quality methods
 - Current MDLs are 0.05 μg/L to 0.1 μg/L for PAHs, PCBs, and pesticide
 - PEDs allow for MDLs ranging from 0.04 pg/L (PCB 180) to 0.015 ng/L (phenanthrene)

- Contaminants in the freely dissolved fraction are the bioavailable fraction are most closely correlated to chemical toxicity
PEDs: Polyethylene Devices

Strip of low-density polyethylene
2.5 cm wide, 43 cm long, & 25, 51, or 70 μm thick
Equilibrium Partitioning

\[K_{PEW} = \frac{C_{PE}}{C_{W}} \]

For pyrene,
\[K_{PEW} = 100,000 \, (\text{mol/kg}_{PE})/(\text{mol/L}_{W}) \] so

100,000 mols/ 1 mol/
1 kg plastic 1 L water

where \(K_{PEW} \) is the equilibrium polyethylene-water partitioning coefficient,
\(C_{PE} \) is the chemical concentration in the polyethylene, and
\(C_{W} \) is the chemical concentration in the water.
Time to equilibrium (i.e., k_{exchange})

$$C_{W\infty} = \frac{C_{PET}}{(1 - e^{-k_et}) \cdot K_{PEW}}$$

where $C_{W\infty}$ is the chemical concentration in the water at equilibrium, C_{PET} is the chemical concentration in the polyethylene at time t, k_e is the exchange rate coefficient and K_{PEW} is the equilibrium polyethylene-water partitioning coefficient.
Time to Equilibrium Dependent on Percentage of Solute Finally Taken up by Sampler

Uptake by a plane sheet from a stirred solution where

\[D \text{ is the diffusion coefficient, } t \text{ is time, and } l \text{ is one-half of the sheet thickness} \]

Numbers on curves indicate the percentage of solute finally taken up by the sheet (Crank, 1975)

Pyrene: Time for 50% Equilibrium
Lab: 1.7 hrs
Field: 43 hrs
PEDs: Time for Equilibrium in Closed Lab Experiment

(Adams et al, 2007)
PEDs: Measured K_{PEW}s as a function of K_{OW}

$$y = 1.13x - 0.86$$

$R^2 = 0.89$

(Adams et al, 2007)
PEDs: Temperature and Salinity Corrections

- Excess Enthalpy of Solution, H_s^e can be used to correct for temperature differences

- Setchenow constant, K_s can be used to correct for salinity effects (open triangle and square)

\[
y = 12x + 7.3 \\
R^2 = 0.71
\]

\[
y = 29x - 0.24 \\
R^2 = 0.97
\]

\[
y = 18x + 2.3 \\
R^2 = 0.98
\]

(Adams et al., 2007)
Spiked vs. PE-Deduced Dissolved Concentrations in Seawater

- Seawater samples with known HOC concentration
- Pre-added deuterated reference compounds added
- Sampling for 2 days (non-equilibrium)
- k-exchange used to correct for time to equilibrium

<table>
<thead>
<tr>
<th>Test</th>
<th>HOC</th>
<th>Spiking concentration (ng/L)</th>
<th>PED-measured concentration (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>Phenanthrene</td>
<td>450 ± 50</td>
<td>410 ± 70</td>
</tr>
<tr>
<td></td>
<td>Fluoranthene</td>
<td>500 ± 60</td>
<td>450 ± 140</td>
</tr>
<tr>
<td>Summer</td>
<td>Phenanthrene</td>
<td>450 ± 50</td>
<td>340 ± 120</td>
</tr>
<tr>
<td></td>
<td>Fluoranthene</td>
<td>500 ± 60</td>
<td>730 ± 260</td>
</tr>
</tbody>
</table>

(Adams et al., 2007)
Boston Harbor Field Measurements

- Two Sites: Near Charles River and Airport
- 15 days in December (2 & 3°C; 33 psu; POC = 0.2 mg/L)
- Total Water: (One point in time) vs. PED (Time-averaged)
Boston Harbor Dissolved Concentrations:
Total Water Extracts vs. PEDs

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Location</th>
<th>Total water extracts (ng/L)</th>
<th>Estimated dissolved fraction</th>
<th>PED extracts (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>phenanthrene</td>
<td>Airport</td>
<td>8</td>
<td>0.99</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>near Charles River</td>
<td>10</td>
<td>0.99</td>
<td>10</td>
</tr>
<tr>
<td>pyrene</td>
<td>Airport</td>
<td>7</td>
<td>0.98</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>near Charles River</td>
<td>8</td>
<td>0.98</td>
<td>2</td>
</tr>
<tr>
<td>PCB # 52</td>
<td>Airport</td>
<td>< 0.03</td>
<td>0.93</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>near Charles River</td>
<td>< 0.02</td>
<td>0.94</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Ongoing Research

PED & SPME Laboratory and Field Sampling (Sayre et al., in prep)

- **Quantifying** PAHs, PCBs, and chlorinated pesticides (e.g., DDT, chlordane) in laboratory and field

Pyrethroids in Ballona Creek Estuary (Lao et al., 2008)

- Using PEDs to measure 8 pyrethroids in Ballona Creek Estuary
PED and SPME Estimated Method Detection Limits

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Log K_{OW} (Lw/L$_{octanol}$)</th>
<th>Log K_f (100 μm) (Lw/L$_{fiber}$)</th>
<th>Log K_{PEW}^f (51 μm) (Lw/kg$_{PE}$)</th>
<th>Method Detection Limit (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenanthrene</td>
<td>4.52a</td>
<td>3.90c</td>
<td>4.33</td>
<td>5.1</td>
</tr>
<tr>
<td>Pyrene</td>
<td>5.00a</td>
<td>4.86d</td>
<td>5.02</td>
<td>0.56</td>
</tr>
<tr>
<td>Benzo[a]pyrene</td>
<td>6.35a</td>
<td>5.82c</td>
<td>6.61</td>
<td>0.06</td>
</tr>
<tr>
<td>PCB 52</td>
<td>6.17b</td>
<td>5.52c</td>
<td>5.51</td>
<td>0.12</td>
</tr>
<tr>
<td>PCB101</td>
<td>6.65b</td>
<td>5.61e</td>
<td>6.16</td>
<td>0.10</td>
</tr>
<tr>
<td>PCB153</td>
<td>7.09b</td>
<td>6.45c</td>
<td>6.71</td>
<td>0.014</td>
</tr>
<tr>
<td>PCB180</td>
<td>7.21b</td>
<td>6.54c</td>
<td>6.91</td>
<td>0.012</td>
</tr>
<tr>
<td>cis-Chlordane</td>
<td>6.22</td>
<td>5.37c</td>
<td>5.53</td>
<td>0.17</td>
</tr>
<tr>
<td>DDE</td>
<td>6.96</td>
<td>5.68c</td>
<td>6.25</td>
<td>0.028</td>
</tr>
</tbody>
</table>

aSangster, 1989; bRuelle, 2000; cMaruya et al, 2009; dDoong & Chong, 2000; eZeng et al., 2005; fSayre et al, in prep.
Laboratory PED & SPME Comparisons

- Four 20-L carboys with PE and SPME in triplicate
- Dissolved concentrations over 4 orders of magnitude
- MDL for 2 g PE below that of SPME
- Two PE-measured concentrations at MDL diverged from LLE

SPME: slope = 0.91
\((n = 24; R^2 = 0.81)\)

PE: slope = 1.1
\((n = 34; R^2 = 0.90)\)

(Sayre et al., in prep)
Pyrethroids in Ballona Creek Estuary

PEDs deployed in Ballona Creek Estuary to measure 8 target pyrethroids

PE deployed for 23 days (sites 1-6)

In situ pump with XAD resin deployed at site 5 (4 days)

Estimated Method Detection Limits for target pyrethroids

<table>
<thead>
<tr>
<th>Compound</th>
<th>MDL ng/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifenthrin</td>
<td>0.0003</td>
</tr>
<tr>
<td>Fenpropathrin</td>
<td>0.0028</td>
</tr>
<tr>
<td>Lamda-Cyhalothrin</td>
<td>0.0001</td>
</tr>
<tr>
<td>Cis-Permethrin</td>
<td>0.0161</td>
</tr>
<tr>
<td>Trans-Permethrin</td>
<td>0.0224</td>
</tr>
<tr>
<td>Cyfluthrin</td>
<td>0.0107</td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>0.0027</td>
</tr>
<tr>
<td>Esfensvalerate</td>
<td>0.0150</td>
</tr>
<tr>
<td>Deltamethrin</td>
<td>0.0022</td>
</tr>
<tr>
<td>Average</td>
<td>0.0080</td>
</tr>
</tbody>
</table>

Sampling sites for PE Deployment in Ballona Creek Estuary (Sept.- Oct. 2007)

(Lao et al., 2008)
Pyrethroids in Ballona Creek Estuary

- Freely dissolved pyrethroids measured 0.5 m below water surface and 0.5 m above creek bottom
- Cis-permethrin ranging from 0.1 – 0.3 ng/L
- Bifenthrin ranging from 0.01 ng/L – 0.07 ng/L

(Lao et al., 2008)
Dissolved bifenthrin concentrations increase with increasing distance from ocean

(Lao et al., 2008)
Pyrethroids in Ballona Creek Estuary

PED-measured vs. XAD-measured at Site 5 in Ballona Creek

- In situ pump 1.5 m from surface pumping 944 L used to measure dissolved conc.
- Strong correlation with PE-measured dissolved concentration

(Lao et al., 2008)
Conclusions

• PEDs are useful devices for the measurement of freely dissolved HOCs in the water column
• Time-averaged, in situ
• Simple extraction and clean-up procedure
• Equilibrium on order of days to weeks
• Reference compounds can be used to correct for non-equilibrium cases
• Temperature and salinity effects can be corrected
• Low detection limits (sub pg/L); increase in mass of PED will further lower DL
• Good agreement with LLE and SPME
• Field Measurements for pyrethroids at pg/L concentrations
Acknowledgments

Contributors

Phil Gschwend, MIT
Rainer Lohmann, MIT & URI
Loretta Fernandez, MIT
John MacFarlane, MIT
Jaime Sayre, USC
Wenjian (Wayne) Lao, SCCWRP
Keith Maruya, SCCWRP

Funding

Parsons Fellowship
Office of Naval Research
Hudson River Foundation Fellowship
Loyola Marymount Summer Research Grant
USC SeaGrant
