MODELING SPRAY DRIFT AND RUNOFF RELATED INPUTS OF PESTICIDES TO RECEIVING WATER

Xuyang Zhang, Yuzhou Luo, Kean S. Goh

Surface Water Protection Program
Environmental Monitoring Branch
California Department of Pesticide Regulation (CDPR)

253rd American Chemical Society National Meeting & Exposition
04/06/2017, San Francisco, CA
Background and study objectives

- Various pathways for pesticide transport
- Surface runoff is known as the most prevalent; spray drift is also significant
- Relative significance of different pathways is not well studied
- Limited literature on drift contribution: 0.3-59%
- Mitigation requires knowledge on the contribution of each route

Objective: develop a modeling framework for evaluating significance of pesticide spray drift within watersheds
Modeling framework

Input data
- Pesticide use (PUR)
- Weather (CIMIS)
- Drainage (NHD)
- Soil (SSURG)
- Land use (NLULC)

Models

1. **Identification of drift potential**
 - Field location
 - Wind direction

2. **AgDRIFT**
 - Application method
 - Deposition curve
 - Area receiving deposition

3. **SWAT**
 - Landscape hydrology
 - Surface runoff
 - Spray drift input as point source
 - Pesticide use & irrigation
 - Channel routing

Outputs

- Identified application events with drift potential
- Drift fraction
- Drift mass
- Daily pesticide loading

Observation
(Monitoring data)
Case study: Orestimba Creek Watershed

- Tributary to SJQ River
- Area: 513 sq. km
- Ag in lower basin
- Highly managed hydro.
- Daily water samples for chlorpyrifos in 1996-1997
Analysis of monitoring data: calculation of pesticide loading

\[L_i = C_i \times F_i \times 0.0864 \]

\[L_{dr} = \sum_{i=m}^{n} L_i \]

- \(L_i \): pesticide loading on day \(i \) (kg)
- \(C_i \): Concentration on day \(i \) (µg/L)
- \(F_i \): flow on day \(i \) (cms)
- \(L_{dr} \): total loading for a drift event
- \(L_i \): pesticide loading on day \(i \)
- \(m \): the day drift begins
- \(n \): the day drift event ends
Identification of drift potential

- Drift potential =
 - use &
 - within 400 m &
 - wind direction
Determination of drift amount

\[M_d = R_p \times A \times F_d \]

- **\(M_d \)**: mass of pesticides drifted and deposited to the receiving water (kg);
- **\(R_p \)**: pesticide application rate (kg/ha);
- **\(A \)**: surface area of the creek that captures drifted droplets (ha);
- **\(F_d \)**: fraction derived from the AgDRIFT deposition curve at downwind distance \(d \).
AgDRIFT spray drift deposition model

- AgDRIFT® version 2.0: curves for aerial, ground and orchard/airblast
SWAT: Soil and Water Assessment Tool

- SWAT2012: by USDA, widely used, physically based; simulate flow, sediment, nutrients and pesticides

- Management:
 - Planting/harvesting
 - Pesticide use
 - Irrigation
 - BMPs

Schematic from Arnold et al., 2012
SWAT model set up

- Watershed delineation
- Hydrological response unit (HRU) = Land use + soil + slope
- Calibration: auto and manual

Objective functions

1. NSE: Nash-Sutcliffe efficiency
2. RSR: RMSE-observations standard deviation ratio
3. PBIAS: Percent bias
<table>
<thead>
<tr>
<th>Field ID</th>
<th>Crop</th>
<th>Spray date</th>
<th>Method</th>
<th>Treated area (acre)</th>
<th>Wind direction</th>
<th>Applied rate R_p (kg/ha)</th>
<th>Distance d (m)</th>
<th>Drift fraction F_d</th>
<th>Deposition area A (ha)</th>
<th>Drift mass (kg)</th>
<th>Drift/total applied (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LII14</td>
<td>walnut</td>
<td>04/30/96</td>
<td>airblast</td>
<td>70</td>
<td>SSW</td>
<td>2.24</td>
<td>0</td>
<td>0.222</td>
<td>1.43</td>
<td>0.71</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>05/19/96</td>
<td></td>
<td>70</td>
<td>SSW</td>
<td>2.24</td>
<td>0</td>
<td>0.222</td>
<td>1.43</td>
<td>0.71</td>
<td>1.12</td>
</tr>
<tr>
<td>NJ13</td>
<td></td>
<td>04/30/96</td>
<td></td>
<td>50</td>
<td>SSW</td>
<td>2.24</td>
<td>0</td>
<td>0.222</td>
<td>3.61</td>
<td>1.80</td>
<td>3.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09/05/96</td>
<td></td>
<td>35</td>
<td>SSW</td>
<td>1.12</td>
<td>0</td>
<td>0.222</td>
<td>3.61</td>
<td>0.90</td>
<td>5.67</td>
</tr>
<tr>
<td>LII1</td>
<td></td>
<td>07/26/96</td>
<td>airblast</td>
<td>18</td>
<td>SSE</td>
<td>2.24</td>
<td>110</td>
<td>0.006</td>
<td>0.94</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>LII10</td>
<td></td>
<td>07/26/96</td>
<td></td>
<td>90</td>
<td>SSW</td>
<td>2.24</td>
<td>0</td>
<td>0.222</td>
<td>2.75</td>
<td>1.37</td>
<td>1.68</td>
</tr>
<tr>
<td>LZ1</td>
<td></td>
<td>07/03/96</td>
<td></td>
<td>40</td>
<td>SSW, WSW</td>
<td>1.68</td>
<td>0</td>
<td>0.222</td>
<td>0.99</td>
<td>0.37</td>
<td>1.36</td>
</tr>
<tr>
<td>MH1</td>
<td></td>
<td>05/29/96</td>
<td></td>
<td>27</td>
<td>ENE</td>
<td>2.24</td>
<td>0</td>
<td>0.222</td>
<td>0.65</td>
<td>0.32</td>
<td>1.32</td>
</tr>
<tr>
<td>MQ2</td>
<td></td>
<td>05/29/96</td>
<td></td>
<td>35</td>
<td>SSE, ESE</td>
<td>2.24</td>
<td>85</td>
<td>0.009</td>
<td>1.27</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>LY3</td>
<td></td>
<td>08/03/96</td>
<td></td>
<td>30</td>
<td>SSW</td>
<td>2.24</td>
<td>0</td>
<td>0.222</td>
<td>0.78</td>
<td>0.39</td>
<td>1.42</td>
</tr>
<tr>
<td>LY3</td>
<td></td>
<td>04/22/97</td>
<td></td>
<td>30</td>
<td>NNW</td>
<td>2.24</td>
<td>0</td>
<td>0.222</td>
<td>0.17</td>
<td>0.09</td>
<td>0.32</td>
</tr>
<tr>
<td>MR4</td>
<td>alfalfa</td>
<td>09/19/96</td>
<td>aerial</td>
<td>60</td>
<td>SSW</td>
<td>0.56</td>
<td>0</td>
<td>0.524</td>
<td>2.82</td>
<td>0.83</td>
<td>6.09</td>
</tr>
<tr>
<td>LX35</td>
<td></td>
<td>03/11/97</td>
<td></td>
<td>40</td>
<td>NNW</td>
<td>0.56</td>
<td>0</td>
<td>0.524</td>
<td>0.04</td>
<td>0.01</td>
<td>0.11</td>
</tr>
<tr>
<td>MQ4</td>
<td>corn</td>
<td>06/30/96</td>
<td>airblast</td>
<td>20</td>
<td>SSW</td>
<td>1.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*This application was excluded from model inputs as the field was located downstream of the sampling sites; and the impacts of spray drift from this field were not captured by the measured dataset.
Results: analysis of monitoring data

- 67-70% were detections (> 0.001 µg/L)
- Max concentration: 2.3 µg/L
- 25 independent peaks at L1
- 8 correspond to spray events
- Mean concentration higher in runoff samples but not statistically significant (P=0.42)
- Drift loading: 24%
- Runoff loading: 76%
Results: flow calibration at L1 site

<table>
<thead>
<tr>
<th></th>
<th>NSE</th>
<th>RSR</th>
<th>PBIAS(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfactory</td>
<td>> 0.50</td>
<td><=0.70</td>
<td><15</td>
</tr>
<tr>
<td>Calibration</td>
<td>0.65</td>
<td>0.6</td>
<td>-11</td>
</tr>
<tr>
<td>Validation</td>
<td>0.74</td>
<td>0.51</td>
<td>27</td>
</tr>
</tbody>
</table>

Rainfall (mm) vs. Flow (cms) plot showing observed and simulated data. The plot includes a 1:1 line for comparison.

- **Rainfall**
- **Observed**
- **Simulated**
Results: chlorpyrifos simulation

- Drift contribution: Sim. 19%; Obs. 24%
- During summer, 54% of the loading from spray drift
- Total predicted loading: 1.32 kg/yr; Obs: 1.29 kg/yr

Rainfall (mm)

Chlorpyrifos loading (kg)

Rainfall
- Observed
- Simulated

NS = 0.18
RSR=0.9
PBIAS=-1.6%
Results: about drift contribution

- The concentration of pesticides resulting from runoff is much higher than those from spray drift (Schulz 2001).

- Relative contribution of the drift and runoff is dependent on two main factors:
 1. Pesticide concentrations from runoff and drift events
 2. Number of runoff and drift events occurring within a temporal cycle

- The results may vary significantly depending on the study area (Schulz et. al. 2001; Raupach et. al., 2001)
The modeling framework simulated daily flow (NSE = 0.74) and pesticide loading (NSE = 0.18) with satisfactory results.

Deposition on the OCW ranged from 0.08 to 6.09% of applied.

Surface runoff was the major pathway in OCW, accounting for 76% of the annual loading; the rest 24% from spray drift.

Modeling showed 81 and 19%, respectively, for runoff and drift.

Spray drift contributed over half of the loading during summer.

The modeling framework could have many uses including design and implementation of mitigation practices.

Next step: will apply to more watersheds in CA; probabilistic approach to consider uncertainties in model inputs.
Thank you!

Questions?

Xuyang Zhang, Ph.D.
Sr. Environmental Scientist
CA Department of Pesticide Regulation
xuyang.zhang@cdpr.ca.gov
(510) 494-1102