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ABSTRACT 
 
HYDRUS1-D and HYDRUS2/3D numerical simulations of gas phase diffusion in porous media 
were compared to analytical solutions of Fick’s second law of diffusion for two sets of boundary 
and initial conditions. The numerical simulations included cases using different water-solid and 
water-air partition coefficients and different water contents. There was close agreement between 
the numerical and analytical solutions for concentration and flux, demonstrating the 
computational integrity of the HYDRUS programs for describing the combined vapor phase 
diffusion/partition process and the first order mass transfer surface volatilization process. 
 
INTRODUCTION 
 
The Department of pesticide Regulation (DPR) has been evaluating several models for 
simulating post-application fumigant volatilization from soil. These include PRZM, LEACHM, 
CHAIN2D, HYDRUS1D, and HYDRUS2/3D. While every transport model has some 
limitations, it is evident that the shortcomings of certain models argue against their general use 
for simulating fumigant volatilization in the regulatory environment. For example, PRZM relies 
on a simplified “tipping bucket” scheme for describing water movement in soil as opposed to the 
more rigorous Richard’s equation. This is problematic because soil-water dynamics have a 
strong influence on simulated vapor phase diffusive transport, so accurate description of soil 
water movement is critical (Spurlock, 2008). Additional model shortcomings include limited or 
no on-going support (CHAIN2D, LEACHM), limited or no ability to represent complex 
geometries (CHAIN2D, HYDRUS1D, LEACHM, PRZM) and poor and/or outdated 
documentation (CHAIN2D). A few attempts have been made to adapt or modernize older models 
such as LEACHM (Chen et al., 1995) and CHAIN2D (with modifications as described in 
Dawson and Smith, 2008). However, problems with lack of support remain for these older 
models, certain of the modifications included the use of novel and complex algorithms without 
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review by qualified independent scientists, and the modified models were not adequately 
validated (Johnson, 2008). The latter shortcomings are severe for a fumigant regulatory program.  
 
In contrast, both HYDRUS1D and HYDRUS2/3D have extensive support (e.g. <http://www.pc-
progress.com/en/Default.aspx?support>) and continue to be extensively used by vadose modelers 
around the world to simulate water, heat and solute movement under a variety of conditions. 
Available at: <http://www.pc-progress.com/en/Default.aspx?h3d-references>. Based on these 
observations, DPR currently considers the most promising models for simulating fumigant 
movement and volatilization from soils to be HYDRUS1D for simple application geometries and 
HYDRUS2/3D for more complex problems. 
 
All of the previously mentioned vadose zone transport models, including the HYDRUS models, 
claim the ability to simulate gas phase transport and surface volatilization. However, even for 
HYDRUS relatively few studies exist that demonstrate these abilities. DPR has begun to 
critically examine the ability of HYDRUS to simulate gas phase diffusion and volatilization from 
soils (e.g. Spurlock, 2008), and this memorandum is one step in that process. The work described 
here tested HYDRUS’ computational integrity by comparing HYDRUS predicted concentrations 
to those obtained from analytical solutions of Fick’s second law of diffusion for two cases with 
different boundary and initial conditions. These comparisons also included the effect of variable 
water content and phase partitioning on diffusion.  
 
It has been suggested that advective transport of soil-applied fumigants due to diurnal barometric 
pressure fluctuations may be significant under certain circumstances (Chen et al., 1995). This 
question remains open, and may be a topic for future analysis of model capabilities. However, 
mass flow in the soil gas phase (advection) is not considered in the HYDRUS models or in any 
of the previously mentioned models. Thus the analysis here is focused solely on gas phase 
diffusion.  
 
METHODS 
 
Crank (1955) provides analytical solutions of Fick’s second law of diffusion (Equation 1) for 
several initial conditions, boundary conditions and geometries.  
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In Equation 1, C is concentration, D is the diffusion coefficient (assumed constant in both 
examples here), t is time and x is the distance coordinate. Solutions for two cases were compared 
to HYDRUS numerical simulation modeling results.  
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Analytical solutions to the diffusion equation 
 
Case 1. Diffusion inside an infinite column (-∞ < x < ∞).  
 
The first example is diffusion from an initial “plug” of solute in an infinite column (Figure 1a).  
 

[2]  
otherwise

wxwCC
0

0
=

<<−=

 
Practically speaking, the “infinite” condition on column length means that the analytical solution 
is applicable to a finite system as long as concentration at the system boundaries does not 
increase above the initial concentration of zero.  The solution for C(t) is (Crank, 1955). 
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In [3], erf is the “error function”  
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where η is a dummy variable. 
 
Case 2. Surface evaporation from a semi-infinite column.  
 
The second example that was investigated was surface evaporation from a semi-infinite medium 
(Figure 1b).  For this case the initial condition is a constant initial solute concentration C0 
throughout the column. The surface evaporation boundary condition is  
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In Equation 5, J is the solute flux density, CS is the concentration at the surface at any time, C∞ is 
the concentration in the atmosphere “remote” from the surface, and α is a proportionality 
constant. All calculations in this paper assumed C∞ =0. In that case, the analytical solution 
describing the total amount of solute volatilized per unit of cross-sectional area at time t (=Mt) is 
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The parameter h = α/D, and erfc is the complementary error function: erfc(z) = 1-erf(z). For large 
values of [h/(Dt)0.5] it is not possible to calculate Equation 6 directly using commonly available 
software such as Excel or SAS. Crank (1955) provides a convenient asymptotic formula for 
“large” h/(Dt)0.5 as an aid in calculating Equation 6. 
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Crank (1955) provides no guidance for what “large” is. However, Weber and Arfken (2003) 
discuss the use of an asymptotic expansion very similar to Equation 7 to estimate erf (z). They 
derive an upper bound for error in a partial sum asymptotic estimate for erf(z) based on the 
number of terms n included in the expansion. Using their result (page 316), the following upper 
bound for the error in using Equation 7 to estimate ez^2 erfc(z) can be easily derived. 
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where “!!” refers to the double factorial function. Equation 8 was used to assess the error in the 
asymptotic expansion for the smallest values of [h/(Dt)0.5, i.e. = z) used in Equation 6. The upper 
bound error yielded an estimate for percent error in flux of << 10-10 in all cases.  
 
Numerical solutions calculated using HYDRUS1-D and HYDRUS2/3D 
 
For both cases, a horizontal soil column at constant water content with zero water flux at all 
boundaries was used in HYDRUS for simulations. Solute aqueous phase diffusion coefficients 
were set to zero to meet the objective of comparing evaluate model simulation results vs 
analytical solutions for gaseous phase diffusion., so the solute aqueous phase coefficient was set 
to zero. Gas phase diffusion was the only transport process simulated. 
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The HYDRUS2/3D simulations were essentially two-dimensional simulations of  
one-dimensional problems. Preliminary simulations demonstrated that the (arbitrary)  
choice of column width z (Figure 1) had no effect on the solute distribution in the x direction or 
flux density in the case of the surface evaporation example. 
 
Comparing numerical solutions of diffusion in a porous medium to analytical solutions. 
 
To compare numerical model solutions to the analytical solution for diffusion within a porous 
medium (Equation 3), both the solute concentration and diffusion coefficient in the porous 
medium need to be expressed in volume-averaged terms. For a volatile solute diffusing in a 
porous medium, the effective diffusion coefficient in the medium is lower than it would be in air 
due to tortuosity and the partitioning of the solute among different soil phases (gas, liquid, solid). 
The effective diffusion coefficient Deff is: 
  
[9]   ggeff RDD τ0=  
 
where D0 is the solute diffusion coefficient in air, τg is the gas phase tortuosity and Rg is the gas 
phase retardation factor. The Deff can be considered the volume average diffusion coefficient in 
the sense that it would be the equivalent overall diffusion coefficient in the medium if diffusive 
transport were occurring throughout the entire medium instead of just in the air-filled porosity.  
 
Most models, including HYDRUS1D and HYDRUS2/3D, account for tortuosity using a 
relationship based on the work of Millington and Quirk (1961).  
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In Equation 10, θ is the volumetric water content, θs is saturated water content and a is the 
volumetric air-filled porosity, typically taken as (θs - θ). It is evident from Equations. 9 and 10 
that increases in water content yield lower effective diffusion coefficients by increasing 
tortuosity.  
 
The gas-phase retardation factor Rg accounts for partitioning.  
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In Equation 11 ρb is soil bulk density, KD is the soil-water partition coefficient and KH is the 
dimensionless air-water partition coefficient (Henry’s law constant). Conceptually, the 
retardation factor may be viewed as the fraction of total solute molecules that are in the gas 
phase in a given volume of soil.  
 
The HYDRUS programs’ output report aqueous concentrations Cw, whereas the analytical 
solutions are based on total concentration in the medium (total solute mass/total volume). 
Consequently, conversion of Cw to total volume-averaged concentration C is required before 
comparison with an analytical solution. 
 
[12] )( DbHw KaKCC ρθ ++=  
 
After converting to total volume-averaged concentration, numerical solutions of Equation 1 
subject to Equation 2 can be easily compared for consistency to Crank’s analytical solution–or to 
each other–by using dimensionless variables. When HYDRUS simulations are conducted using 
different soil water content θ, Henry’s law constant KH and/or sorption coefficient KD, the net 
effect of changing those variables is to modify the effective diffusion coefficient in the medium 
Deff by changing the gas phase retardation factor (Equations 9 and 11). However, plots of 
dimensionless concentration C* = C/C0 vs. dimensionless distance x/w will be congruent for any 
fixed value of dimensionless time (Deff t/w2)0.5 (Crank, 1955)–regardless of the actual values of 
the dimensioned variables.  
 
In the second case, the surface evaporation boundary condition for the analytical solution 
(Equation 5) is similar to the surface boundary layer condition for volatile solutes used in both 
HYDRUS models. 
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The parameter d is a measure of diffusive resistance at the surface and is called the boundary 
layer thickness (Jury et al., 1986). Large values of d correspond to high diffusive resistance and 
may be used, for example, to simulate the presence of diffusive barriers such as tarps. In 
Equation 13, Cg(0) is the gas phase concentration at the surface (i.e. x = 0, Fig. 1b). In many 
modeling applications, the atmospheric concentration distant from the surface Cg(∞) is often 
assumed to be zero. That assumption was employed here for all simulations and the analytical 
solution calculations (i.e. Cg(∞) = C∞ = 0).   
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In the surface evaporation boundary condition, α is a first order mass transfer coefficient 
(Equation 5) and the parameter h = α/D. Comparing Equations 5, 6, and 12, it is evident that for 
any given HYDRUS simulation the corresponding analytical solution can be calculated using the 
following substitutions in Equation 6: 
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RESULTS 
 
Case 1. Diffusion from an initial “plug” distribution inside an infinite column 
 
Two different examples were simulated using both HYDRUS1D and HYDRUS2/3D for the case 
of diffusion from an initial “plug” distribution inside an infinite column. In example 1a, the set of 
input data given in Table 1 were used in both HYDRUS1-D and HYDRUS2/3D to calculate 
solute distributions in the column for a given time. The resultant distributions for the two models 
were essentially identical to each other, and also identical to the analytical solution (Figure 2). 
For example, peak concentrations in Figure 2 were 0.2151, 0.2149 and 0.2145 for HYDRUS1D, 
HYDRUS2/3D and the analytical solution, respectively. For both models, the correlation 
between model simulations and analytical solution were nearly equal to unity (> 0.99999). The 
mean percent difference between HYDRUS-modeled concentrations and the analytical solution 
in Figure 2 was 0.3 percent. 
 
For example 1b of diffusion from an initial “plug” distribution inside an infinite column, three 
different sets of the variables KD, θ, θs, a, τg and KH were created (Table 2), and each set 
assigned to either HYDRUS1D, HYDRUS2/3D or the analytical solution calculation method. 
Solute distributions were then calculated for a given fixed dimensionless time (Deff t/w2)0.5 = 
2.598. Although different values of the input variables were used for each calculation method, 
the solute distributions from both models were very close to the analytical solution when plotted 
as dimensionless variables (Figure 3). For example, peak concentrations in Figure 2 were 0.2149, 
0.2149 and 0.2145 for HYDRUS1D, HYDRUS2/3D and the analytical solution, respectively. 
Other triplicate sets of input data also yielded nearly essentially identical results (results not 
shown).  
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Table 1. Inputs for case 1a simulations/calculation. Actual units are arbitrary. 
Model Inputs  
gas phase diffusion coefficient D0 (L2 T-1) 24.98 
soil volumetric water content θ (-) 0.171 
soil saturated water content θs  (-) 0.400 
soil bulk density ρb (M L-3) 1.5 
soil-water partition coefficient KD (L3 M-1) 0.33 
air-water partition coefficient  KH (-)  0.035 
HYDRUS1D: half-width of initial solute distribution  w (L) 1.054 
HYDRUS2D: half-width of initial solute distribution  w (L) 1.125 
Derived Variables  
air-filled porosity a (-) 0.229 
effective diffusion coefficient Deff (L2 T-1) 0.060 
gas phase retardation factor Rg (-) 0.0119 
gas phase tortuosity τg (-) 0.201 
duration of simulation: dimensionless time (-) 2.598 

L = length, M= mass, T=time 
 
Table 2. Inputs for case 1b simulations/calculation. Units as in Table 1. Duration of all 
simulations/calculation= 2.598 = dimensionless time = (Deff t/w2)0.5.  
Model Inputs  

HYDRUS1D 
 
HYDRUS2D 

ANALYTICAL 
SOLUTION 

D0 13.926 51.409 362.446 
θ 0.1706 0.0694 0.120 
θs  0.400 0.400 0.350 
ρb  1.50 1.50 1.175 
KD  1 5 2 
KH  0.20 0.30 0.05 
h  1.054 0.625 1.5 
Derived Variables    
a 0.229 0.330 0.230 
Deff  0.075 0.1054 0.3037 
Rg 0.0267 0.00435 0.00317 
τg  0.2014 0.4719 0.2646 
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Case 2. Surface evaporation from a semi-infinite column. 
 
For this example, HYDRUS1D and HYDRUS2/3D simulations were conducted using the 
parameters in Table 3. The analytical solution (Equation 6) was calculated using α = D0/d = 
2000, where those values of D0, and d are those used in the modeling simulations (Table 3). The 
cumulative HYDRUS flux results were taken directly from model output files. The two model 
simulations and the analytical solution yielded very similar results (Figure 4), with pairwise 
correlations >0.99999. The mean percent difference between the HYDRUS predicted fluxes and 
the analytical results in Figure 4 was 1.3 percent (mean of [(HYDRUS-analytical) / analytical]). 
 
Table 3. Inputs for case 2 “surface evaporation condition” simulations/calculation. Both 
models and analytical solution used identical inputs. 
Input Variables  
D0 1000 
boundary layer thickness for HYDRUS models, d 0.5 
θ 0.0694 
θs  0.40 
ρb  1.50 
KD  2.5 
KH  0.3 
initial uniform conc in medium C0 (M L-3) 1 
constant of proportionality, Equation [7] α (L T-1) 2000 
Derived Variables  
a 0.3306 
Deff  11.955 
Rg 0.0253 
τg  0.4723 
h (=α/Deff , L-1) 167.29 

 
CONCLUSION 
 
In the first case of volatile solute redistribution by gaseous diffusion from an initial “plug” inside 
an infinite column, the two HYDRUS1D and HYDRUS2/3D models provided solute 
distributions that were indistinguishable from the analytical solutions. In addition, the effect of 
both phase partitioning and water content on modeled gas phase diffusive transport within the 
porous medium was as expected from first principles (Equations 9 thru 11).  
 
In a second example, the models were used to simulate volatilization from the boundary of a 
semi-infinite medium at constant initial concentration and using the standard HYDRUS volatile 
solute boundary condition. This “volatile” boundary condition describes solute volatilization 
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using first-order mass transfer kinetics (Šimůnek et al., 2007; Šimůnek et al. 2008). The 
HYDRUS time series predictions of cumulative solute volatilized were essentially identical to 
the analytical solution. In summary, no computational problems or inaccuracies were observed in 
any of the comparisons between the HYDRUS models and the analytical solutions. 
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Figure 1. (a) Case 1. Diffusion inside an infinite column. Initial solute distribution: conc = C0,  –h < x < h; = 0 elsewhere. 
(b) Case 2. Volatilization from semi-infinite column at constant initial concentration throughout. Volatilization modeled as 

first-order mass –transfer process.
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