Overview of Stormwater-Related Scientific Issues and Resources

Kelly D. Moran, Ph.D.
TDC Environmental, LLC
Urban Pesticide Pollution Prevention Project

- **Manager:** San Francisco Estuary Project
- **Funding:** State Water Board, Municipalities
- **Goal:** Prevent surface water toxicity from urban pesticide use
- **Activities:**
 - Science, regulatory, & other support for water quality agencies
 - Urban Pesticides Committee
 - E-mail listserver
 - Web site www.up3project.org
Acknowledgements

- Preparation
 - Armand Ruby, Armand Ruby Consulting
 - Laura Speare, UP3 Project Manager

- Assistance with Data
 - DPR (Larry Wilhoit, George Farnsworth)
 - Scotts Miracle-Gro
Overview Topics

- California Urban Pesticide Use Data Sources
- Urban Runoff Pollutant Transport Processes
- Urban Runoff Monitoring Challenges

Today - Brief overview only
Follow-up forum on urban runoff recommended by UP3 Project and CASQA
California Urban Pesticide Use Data Sources

- Pesticide Use Reporting – DPR (Cal-PIP)
- Pounds of Pesticides Sold Reports - DPR
- Residential surveys
 - Several high-quality surveys funded by DPR/conducted by UC IPM
- Shelf surveys - UP3 Project, UC IPM
Approach to Estimating Urban Pesticide Use with DPR Data

Urban Use = Reported + Over-the-Counter Urban Use (OTC) Sales

Assumption:
- OTC Sales = Urban use that does not require reporting (i.e., residential) (overestimate)

Statewide OTC Sales = Statewide Sales - Statewide Reported Use

Reality check:
- Estimated OTC sales of bifenthrin 2004/05 = 13,000 lb ai
- Scotts actual OTC sales of bifenthrin 04/05 = 11,000 lb ai
Example based on 2-year averages for 2004/05

DPR data have significant uncertainties
 - DPR PUR data include errors from non-reporting (variable; estimated to average about 10%) and data handling (estimated <1-2%)
 - DPR Sales data include errors from non-reporting, incorrect reporting, data entry, and annual variations – uncertainty likely >10%

Use of DPR and Scotts data does not constitute endorsement of this analysis
About 75% of 2004-2005 California Bifenthrin Use was in Urban Areas.

Source: California DPR Pesticide use reporting data & Scotts sales data.
Note: Data accuracy warrants only one significant figure. Additional digits provided to simplify category tracking.
Most 2004-2005 California Urban Bifenthrin Use Was by Professionals

- OTC Sales: 19.5%
- Reported Urban Use: 80.5%

Source: California DPR Pesticide use reporting data & Scotts sales data.
Note: Data accuracy warrants only one significant figure. Additional digits provided to simplify category tracking.
Most 2004-2005 California Urban Bifenthrin Use Was for Structural Pest Control

- Structural Pest Control: 72.1%
- Landscape Maintenance: 4.4%
- OTC - Lawns: 7.6%
- Other reported urban use: 4.0%
- OTC - any urban use: 11.9%
- Other reported urban use: 4.0%

Source: California DPR Pesticide use reporting data & Scotts sales data.
Note: Data accuracy warrants only one significant figure. Additional digits provided to simplify category tracking.
Structural Pest Control Includes Some Underground & Indoor Applications

Survey data on indoor pesticide use:
Indoor use by professionals likely small --2-6% of applications at residences
OTC indoor use may be meaningful --# Residential indoor applications > outdoor

Source: California DPR Pesticide use reporting data, Scotts sales data, and analysis of product labels.
Note: Data accuracy warrants only one significant figure. Additional digits provided to simplify category tracking.
Urban Runoff Pollutant Transport Processes

Application

Runoff

Plants / Soil

Paved Surfaces

Discharge

Storm Drain Outfall

Rain / Irrigation

Figure courtesy SF Bay Regional Water Board, based on U.C. IPM Project drawing
Pollutant transport in urban runoff depends on:
- Physical characteristics of watershed/runoff conveyances
- Chemical properties of pollutants

Pollutant transport related to many factors, including:
- Runoff intensity (larger flow/larger particles transported)
- Rainfall/Runoff volumes
- Surface characteristics
- Pollutant chemical properties (fate, solubility)
- Pollutant release patterns

Topic of engineering research since early 1980s
Impervious Surfaces Increase Runoff Quantities

Pre-Development

Post-Development

Diagrams courtesy NEMO (Nonpoint Education for Municipal Officials) and the Lower Columbia River Estuary Partnership.
Impervious Surfaces Increase Runoff Intensity

Diagram of example courtesy NEMO-California Partnership
Pollutant Washoff Differs Between Impervious & Pervious Surfaces

Typical California urban stormwater conveyance system – Street gutter
Water & pollutants efficiently moved to creeks

Alternative stormwater conveyance system example – Vegetated swale
Slower flow & infiltration reduces pollutant discharge (e.g., TSS removal about 80%)

Understanding Impervious Surfaces Is Usually Key to Loads

For most pollutants, loads are dominated by runoff from impervious surfaces
Urban Runoff Monitoring Challenges: Many Discharge Points
Urban Runoff Monitoring Challenges: Data Variability

Event Mean Diazinon Concentrations, Sacramento CA

Urban Runoff Monitoring Challenges: Data Variability

Event Mean Copper Concentrations, Castro Valley CA

Source: Alameda Countywide Clean Water Program.
Urban Runoff Monitoring Challenges: Weather

Annual Rainfall Sacramento California 1970-1999

Urban Runoff Monitoring Challenges: Need Large # Samples for Conclusions

- **EXAMPLE: Long-Term Effectiveness, Sacramento County Stormwater Program**
 - If the actual quality of stormwater runoff were improved by 30%, to demonstrate that change via traditional monitoring would require approx. 6 samples per year over 20 years.

- **EXAMPLE: Before and After Studies, Copper in Urban Runoff**
 - Based on the known variability of copper urban runoff data in the San Francisco Bay Area, the # samples required to show a statistically significant difference:
 - 25% change – 40 samples “before” + 40 samples “after”
 - 50% change – 10 samples “before” + 10 samples “after”

Note: “Statistically significant” is defined as 80% statistical power, with 95% confidence. Sources: LWA (1996). Technical Memorandum: An Evaluation of Methods for the Assessment of Long Term Effectiveness of the Sacramento CSWMP. Nov. URS (1999). Feasibility of Detecting Changes in Environmental Copper Concentrations as a Result of Changes in Automotive Brake Pad Composition. Memorandum to the City of Palo Alto. May.
Next Steps

UP3 Project and CASQA would like to work with DPR to set up a follow-up forum specifically on urban runoff