SUMMARY OF TOXICOLOGY DATA
ACTIVE INGREDIENT 2,4-D

[This document includes data on some salts and esters, with unique Tolerance #s]

Chemical Code # 000636, Document Processing Number (DPN) # 00142
SB 950 # 176
Original Summary dated September 26, 1986
Revised 11/4/88, 5/18/89, 8/01/91, 8/16/93, 7/19/94, 12/12/95, 1/16/96, 2/24/00, 5/20/13, and June 12, 2014

DATA GAP STATUS

Chronic toxicity, rat: No data gap, possible adverse effect
Chronic toxicity, dog: No data gap, possible adverse effect
Oncogenicity, rat: No data gap, no adverse effect
Oncogenicity, mouse: No data gap, possible adverse effect*
Reproduction, rat: No data gap, possible adverse effect
Developmental toxicity, rat: No data gap, no adverse effect
Developmental toxicity, rabbit: No data gap, no adverse effect
Gene mutation: No data gap, no adverse effect
Chromosome effects: No data gap, no adverse effect
DNA damage: No data gap, possible adverse effect
Neurotoxicity: No data gap, possible adverse effect **

* Liver tumors appeared to be elevated at and above the “MTD” in male mice, based on small numbers of adenomas in an interim sacrifice group in an aborted study. Reducing dose levels only slightly in a replacement study eliminated liver tumor effects (see below).
** There are no avian neurotoxicity studies on file, but there are acceptable rat neurotoxicity studies (one acute and one chronic).

Toxicology one-liners are attached.

Charles V. Aldune, June 12, 2014

Revised 6/13/14
All record numbers for the above study types through 276142 (Document No. 00142-0258) were examined. This includes all relevant studies indexed by DPR as of June 12, 2014.

In the 1-liners below:
- indicates an acceptable study.
- **Bold face** indicates a possible adverse effect.
- ## indicates a study on file but not yet reviewed.

File name: t20140612
Recent revisions by Moore, 5/20/13, and by Aldous, June 12, 2014.

Related Active Ingredients: Currently all data for the active ingredient relevant to this Summary of Toxicology Data are submitted under the tolerance number for the free acid. There are several registered salts and esters of 2,4-D. Some older studies have been submitted under tolerance numbers 50721 and 50730 (see below), and these are included in this Summary. No new reports of studies relevant to this Summary were found under tolerance numbers other than #142 upon searching for study reports for all major salts and esters of 2,4-D with active registrations. Aldous, 10/29/99.

2,4-D (SB #176) is the “Lead Chemical” for the series of 2,4-D salts and esters (SB # 177 to SB # 197). This toxicology summary includes any existing 1-liners for the following 2,4-D salts and esters, as well as the free acid:

- 2,4-D Dimethylamine (DMA) salt: Chemical Code # 000806, Tolerance # 50721, SB 950 # 178
- 2,4-D, 2-Ethylhexyl Ester: Chemical Code # 001622, Tolerance # 50730, SB 950 # 189

This record contains summaries of studies. Individual worksheets may be useful for detailed assessment.

Note: The following symbols may be used in the Table of Contents which follows:
- **= data adequately address FIFRA requirement
- † = study(ies) flagged as “possible adverse effect”
- (N/A) = study type not currently required

Table of Contents

- METABOLISM AND PHARMACOKINETICS... 3
- SUBCHRONIC STUDIES ... 4
 - Oral toxicity, rat: ** †.. 4
 - Oral toxicity, non-rodent: ... 5
 - Dermal toxicity, 21/28-day or 90-day: ... 5
- CHRONIC STUDIES ... 5
Combined, rat ** † (not oncogenicity) ... 5
Chronic, dog ** † .. 7
Oncogenicity, rat (see acceptable data under Combined, rat) 8
Oncogenicity, mouse ** † ... 8

GENOTOXICITY .. 10
Bacterial reverse mutation assay ** ... 10
Mutagenicity: In vitro mammalian cell assay .. 12
Mutagenicity: In vivo cytogenetics ** ... 12
Mutagenicity: DNA Damage ** † (no longer a mandated test classification) 13

REPRODUCTIVE TOXICITY, RAT ** † .. 14
DEVELOPMENTAL TOXICITY ... 18
Rat ** .. 18
Rabbit ** ... 20
Hamster ... 20

NEUROTOXICITY ... 20
Acute neurotoxicity, rat ** .. 20
90-day neurotoxicity, rat ** † (this was a 1-yr exposure) 21
Developmental neurotoxicity, rat (see record 253049 under reproductive toxicity) .. 21
Delayed neurotoxicity, hen (not required at this time) 22
Additional data to support neurotoxicity studies, including lab validation 22

IMMUNOTOXICITY ** (addressed in Record No. 253049, found under reproductive toxicity, rat) ... 25

ENDOCRINE DISRUPTOR STUDIES ... 26

SUPPLEMENTAL STUDIES .. 26

U.S. EPA REVIEWS CROSS-REFERENCED TO DPR RECORD NUMBERS 26

METABOLISM AND PHARMACOKINETICS
142-133 095867 Timchalk, C., Dryzga, M.D., and Brzak, K. A., “2,4-Dichlorophenoxyacetic acid, tissue distribution and metabolism of 14C-labeled 2,4-dichlorophenoxyacetic acid in Fischer 344 rats.” Dow Chemical Co., Midland, MI, Dec. 5, 1990. Rats were dosed once with 1 or 100 mg/kg labeled 2,4-D; or once daily with 1 mg/kg/day unlabeled 2,4-D for two weeks followed by a single dose of 1 mg/kg of labeled 2,4-D; or with a single iv dose of 1 mg/kg of labeled 2,4-D. Regardless of route, dose level, or duration of treatment; most of the dose was excreted in urine. Almost all of the 2,4-D was excreted unchanged. Peak plasma levels were obtained after about 4 hr, and very little remained in tissues at 48 hr. Data suggest rapid
absorption and rapid excretion. No Medical Toxicology Branch review worksheet was made as of 6/28/91 (Aldous).

SUBCHRONIC STUDIES

**Oral toxicity, rat: **

142-137 098298 “Subchronic Toxicity Study in Rats with 2,4-Dichlorophenoxyacetic Acid”, (Gene E. Schulze, Ph.D., D.A.B.T., Hazleton Laboratories America, Rockville, MD., August 7, 1991). 2,4-dichlorophenoxyacetic acid, 96.1% purity, was administered in the diet for 13 weeks at 0, 1, 15, 100, and 300 mg/kg/day to 10 Fischer 344 rats per sex per group. NOEL = 15 mg/kg/day [based primarily on dose-related decrements in body weights and in food consumption (both sexes); marked decrement in thyroid hormones (especially T4, both sexes); dose-related increases in cataracts (females); hypertrophy of zona glomerulosa of adrenal cortex (both sexes, more prominent in females)]. The study indicates “possible adverse effects”, due to cataracts, retinal degeneration, thyroid hormone decrements, adrenal cortex effects; and secondarily to testicular atrophy, which was limited to 300 mg/kg/day males. The high dose exceeds the “MTD”, based on large body weight and food consumption decrements, and on the wide range of toxic responses at that dosage. Study is acceptable. H. Green and C. Aldous, 3/25/93.

50721-039 097502 Schulze, G. E., “Subchronic toxicity study in rats with the dimethylamine salt of 2,4-dichlorophenoxyacetic acid”, Hazleton Laboratories America, Inc., April 9, 1991. This study was undertaken to establish dose levels for an eventual 2-year rat feeding study. Ten Fischer-344 rats/sex/group were given 0, 1.2, 18.1, 120, or 361 mg/kg/day of test article (expressed as 2,4-D-DMA) in diet for at least 13 weeks. NOEL = 18.1 mg/kg/day. Body weight and food consumption were reduced substantially in 361 mg/kg/day rats, and biologically significantly also in 120 mg/kg/day females. Various hematology changes were noted, especially decreases in counts of various blood cell types, generally in 120 and 361 mg/kg/day groups. Thyroid follicular cell hypertrophy was noted in some 361 mg/kg/day males and females, and thyroid hormone levels were generally reduced in 120 and 361 mg/kg/day males and females. Retinal degeneration and cataract formation in 361 mg/kg/day females, testicular atrophy in 361 mg/kg/day males, hypertrophy of the zona glomerulosa of the adrenal cortex, loss of brush border cells in proximal tubular cells of kidney in both sexes, centrilobular hepatocellular hypertrophy in females, and hypoplasia of spleen (females) and bone marrow (both sexes) were noted in histopathology. No “possible adverse effects” are noted, however clearly the appropriate high dose for the chronic study would be well above 18 mg/kg/day, and below 361 mg/kg/day (which appears to exceed the MTD). No Medical Toxicology Branch review is needed for SB-950 purposes. Aldous, 6/25/91. [Note: results of this study were compared with results of study 098298, above, in the discussion of the 1993 worksheet for that study].

Oral toxicity, non-rodent:
There is no study of this type on file.

Dermal toxicity, 21/28-day or 90-day:
There is no study of this type on file

CHRONIC STUDIES

Combined, rat ** † (not oncogenicity)
The chronic NOEL is 1 mg/kg/day, based on increased pigmentation in tubular epithelium of kidneys of both sexes in the 1986 Hazleton study and in males in the 1995 Dow study (Record No. 156537), also mineralization of kidney pelvic epithelium in the latter study in females. The high dose led to excessive body weight decrements, particularly in females. Also there was unusual histopathology at that dose level (increases or decreases compared to normal), suggesting that an MTD had been exceeded at 150 mg/kg/day. “Possible adverse effects” relate to the severities of several high dose effects: no oncogenicity was indicated. Aldous, 2/24/00.

**142-175 156537 Jeffries, T. K, B. L. Yano, J. R. Ormand, and J. E. Battjes, “2,4-Dichlorophenoxyacetic acid: Chronic toxicity/oncogenicity study in Fischer 344 rats”, The Dow Chemical Company, Midland, MI, 3/28/95. Laboratory Project Study No. K-002372-064. This was a standard combined study, with 50 F344 rats/sex/group at 0, 5, 75, or 150 mg/kg/day of 2,4-D (96.45%). Exposure was by diet, with concentrations adjusted according to group body weight and food consumption patterns. Additional groups of 15 rats/sex/group were used for a 1-year study. Of these, 5/sex/group were allocated to a neuropathology group, and 10 to a standard interim sacrifice group. FOB evaluations were performed at about 3, 6, 9, and 12 months into the study on all neuropathology rats and on a pre-selected 5/sex/group of the interim sacrifice rats. The FOB report is a separate document to be reviewed separately. Multiple sections of brains were examined microscopically, since an earlier study (Record No. 047270, the 1986 Hazleton combined F-344 rat study) had indicated a possible brain tumor effect. NOEL = 5 mg/kg/day. Many findings at 75 mg/kg/day were limited to females, including reduced body weight, reduced blood parameters (RBC count, Hb, HCT, platelet count), reduced ovarian weights at 2-year sacrifice, increased thyroid weights, increased hepatocyte size and altered tinctorial properties, and alveolar histiocytosis and increased chronic or subchronic inflammation in the lungs. Dose-related degeneration of the descending portion of the kidney proximal tubule was observed to a slight degree in 75 mg/kg/day males and females at 1 year, but this response did not persist in the 2-year study. Clinical chemistry findings at 75 to 150 mg/kg/day included: slightly elevated alanine aminotransferase activities in males, slightly increased alkaline phosphatase and aspartate aminotransferase activities in both sexes, slightly reduced glucose and globulin levels in females, and reduced cholesterol and elevated creatinine in both sexes. Dose-related reductions in thyroid hormone (T4) were found in both sexes at 75 to 150 mg/kg/day, with the strongest reductions in females. Study found no oncogenicity (supersedes Record No. 047270 in this respect). Study indicates a “possible adverse effect”, based upon several changes of remarkable incidence or degree at 150 mg/kg/day and occasionally at 75 mg/kg/day [ocular changes (cataracts and retinal degeneration), heart degeneration, and lung inflammation and histiocytosis, substantial drop in circulating thyroxin, and proximal tubular degeneration at 1-yr sacrifice]. Supplement in 142-176 156538 provided histopathology data on brains of...
intermediate group male rats, which data are incorporated into this review. These results do not indicate any treatment effect on brain tumor incidence, thus there is no overall indication of oncogenicity in rats. The high dose led to excessive body weight decrements, particularly in females; also there was unusual histopathology at that dose level (increases or decreases compared to normal), suggesting that an MTD had been exceeded at 150 mg/kg/day. Aldous, 12/31/99.

142-157 132112 one year interim report of Record No. 156537, above. Interim report was examined by Aldous on 12/06/95.

**142-105 to -107 047270-047272. “Combined toxicity and oncogenicity study in rats: 2,4-Dichlorophenoxyacetic acid” [Final Report]. Hazleton, (Vienna, VA), 5/29/86. 2,4-D, 97.5% purity, 0, 1, 5, 15, or 45 mg/kg/day, fed to Fischer 344 rats, 60/sex/group, for 104 weeks. NOEL = 1 mg/kg/day (kidney tubular cell pigmentation at 5 mg/kg/day). Possible adverse effect: [low NOEL for kidney effects, also astrocytomas were increased in males (incidence of 1, 0, 0, 2, and 6 for increasing dose groups)]. Record No. 047272 contains pathologist's interpretation of tumor data, which review suggests that increased tumors in high dose group were incidental, since several features commonly observed in treatment-caused astrocytomas were not observed in this study. ACCEPTABLE. (J. Gee, 9/25/86 and C. Aldous, 8/1/88).

NOTE: EPA requested an additional oncogenicity study, the final report of which is Record No. 156537.

EPA concluded in Federal Register 53 (56), 9590-9594, dated 3/23/88: that the Fisher-Exact test was negative, and the Cochran-Armitage trend test was marginally positive for increased incidence of astrocytomas in males, thus “neither evaluation found strong statistical evidence of oncogenicity in the rat.”

142-111:[no record #] Rebuttal to 105-107:047270-047272. Cites pathology consultant's comments in 107:047272, above; gives an example of uneven distribution of gliomas in rat brains from two control groups in another study; notes that there were no increased tumors in a recent 2,4-D study with B6C3F1 mice. No new data were presented in this rebuttal with respect to the cited 2,4-D rat study. This submission was discussed in a supplemental worksheet to 105-107:047270-047272 by C. Aldous, 8/1/88.

142-088 028383 Interim report to 105:047270.

142-157 132112 Jeffries, T. K, B.L. Yano, and J. R. Ormand, “2,4-Dichlorophenoxyacetic acid (2,4-D): Chronic toxicity/oncogenicity study in Fischer 344 rats - one year interim report”, The Dow Chemical Co., Midland MI, 6/23/93, Laboratory Project Study ID# K-002372-064I. Ten rats/sex/group were assigned to the 1-yr interim sacrifice portion of the combined study. Rats received 0, 5, 75, or 150 mg/kg/day 2,4-D (96.4%). Ten/sex/group received microscopic examinations in at least controls and high dose groups. Intermediate groups were examined where indicated. NOEL = 5 mg/kg/day [noteworthy findings at the LEL included slight kidney proximal tubule degeneration; alveolar histiocytosis in lungs of females; hepatocyte enlargement with some altered staining characteristics in females; several clinical chemistry changes, particularly marked decrements in thyroxin in both sexes (thyroid weights were elevated in high
dose males and females, and in 75 mg/kg/day females, however thyroid histopathology was limited to very slight decrease in thyroglobulin in females; hematology changes in females (decreased RBC count, decreased HCT); small reductions in body weights in females. Bilateral testicular tubular atrophy was observed in 150 mg/kg/day males. Study is valid as an interim report, but does not independently fill a data requirement. A “possible adverse effect” is indicated, largely due to the substantial drop in circulating thyroxin levels in both sexes, and to retinal degeneration in 150 mg/kg/day females. Aldous, 12/06/95.

142-120 071907 “Acute, pharmacokinetic, and subchronic toxicological studies of 2,4-Dichlorophenoxyacetic acid.” Report in Fundam. Appl. Toxicol. 9, 423-435 by Gorzinski et al. This report was submitted primarily in justification for dosage selection for primary study 105:047270. This published report did not require CDFA written review, since the study had already been accepted by CDFA; however the review contents were discussed in CDFA rebuttal response of 5/17/89, by C. Aldous.

142-151 127497 Dalgard, D. W., “52-Week Dietary Toxicity Study with 2,4-D in Dogs”, Hazleton Washington, Inc. Report #HWA 2184-124, 11/29/93. Technical grade 2,4-D, reported purity 96.7%, was given in diet for 1 year to 5 beagles per sex per group at 0, 1, 5, or 10/7.5 mg/kg/day (high dose was reduced from 10 to 7.5 mg/kg/day after week 8 due to poor body weight gain). NOEL = 1 mg/kg/day [perivascular chronic active inflammation in liver (both sexes), pigment in liver sinusoidal lining cells (females), and pigment in tubular epithelium of kidney (both sexes)]. These histopathology changes were associated with clinical chemistry effects (increased blood levels/activities of BUN, creatinine, alanine aminotransferase, and cholesterol; decreased blood glucose levels). Acceptable, with a “possible adverse effect” (due to comparatively low NOEL for liver and kidney effects). H. Green and C. Aldous, 7/19/94.

142-133 095868 Schulze, G. E., “Subchronic toxicity study in dogs with 2,4-Dichlorophenoxyacetic acid”, Hazleton Laboratories America, Inc., Vienna, VA HLA Study No. 2184-115; 12/14/90. Study was done to establish dose levels for a chronic study, for which dose levels were to be approved by EPA. Dose levels in this subchronic study were 0., 0.3, 1, 3, and 10 mg/kg/day by gelatin capsule, administered to 5 beagles/sex/dose. Body weights appeared appreciably decreased in 10 mg/kg/day males and females, in association with reduced food consumption. Characteristic clinical signs included soft, mucoid feces at 3-10 mg/kg/day in males and at 1-10 mg/kg/day in females; sometimes also sanguineous in 3-10 mg/kg/day females and in 10 mg/kg/day males. RBC parameters were depressed significantly in 10 mg/kg/day males. At 10 mg/kg/day, 3/10 dogs were sacrificed moribund. Thymic depletion was seen in two of them. Microscopic findings in 10 mg/kg/day and sometimes in 3 mg/kg/day dogs included testicular hypospermatogenesis and alterations in kidney proximal convoluted tubules. Proposed high dose level for the chronic study was 3 mg/kg/day, which seems defensible from the abstract summary. No separate Medical Toxicology Branch review is required at this time. Aldous, 7/1/91.

50721-049 112025 Proposed protocol for Record No. 127497, above.
142-111 055303 “Chronic Toxicity of 2,4-Dichlorophenoxyacetic Acid in Rats and Dogs.” (Toxicol. Appl. Pharmacol. 20:122-129, 1971). Technical 2,4-D was given to 6-8 month old beagles for 2 years at 0, 10, 50, 100 or 500 ppm, 3/sex/group. One low dose male died, all animals were necropsied and examined microscopically. No specific effect noted.

UNACCEPTABLE and does not appear to be upgradeable due to multiple deficiencies, including: no evidence of an MTD; no hematology, clinical chemistry, or urinalysis; no clinical observations; methods and evaluation criteria not detailed; no individual nor summary tabulated data included. The sponsor has requested EPA for copies of the full report which will be forwarded to CDFA for review (ref: document #142-111, letter dated 3/11/87). (D. Shimer/Y. Luthra, 12/2/87; re-examined without additional worksheet, C. Aldous, 8/10/88).

Oncogenicity, rat (see acceptable data under Combined, rat)
(See also combined rat, above)

142-111 055303 “Chronic Toxicity of 2,4-Dichlorophenoxyacetic Acid in Rats and Dogs.” (Toxicol. Appl. Pharmacol. 20:122-129, 1971). Technical 2,4-D was given in the diet to Osborne-Mendel rats, 25/sex/group at 0, 5, 25, 125, 625 or 1250 ppm for 2 years. Survival was adequate and all animals were necropsied. Histopathology on 6/sex/group in high dose and control, and selected tissues of animals in other groups. Limited hematology done. No adverse effects indicated. UNACCEPTABLE, not upgradeable: too few animals on study, too few tissues systematically examined, no individual data, and other major variances from modern guidelines. The sponsor has requested EPA for copies of the full report which will be forwarded to CDFA for review (ref: document #142-111, letter dated 3/11/87). (D. Shimer/Y. Luthra, 12-2-87; re-examined without additional worksheet, C. Aldous, 8/10/88).

Oncogenicity, mouse **†
The data requirement has been met, with a possible adverse effect, based on possible hepatocellular effects indicated in the aborted portion of the Dow Chemical Study (Study ID: K-002372-063F), which tested males at and above the MTD. See in particular the review of the 1-year interim report of that study in Record No. 124245, below. That study indicated that males dosed with 150 to 300 mg/kg/day 2,4-D had increased hepatocellular tumors (incidences of 0/10, 0/10, 2/10, and 4/10 as of 1-year interim sacrifice). No hepatocellular tumor effect was observed in the more recent (2-year) study (Record No. 143336). Together, these studies indicate that 2,4-D elicits tumors at and above the MTD, but not below the MTD. The overall NOEL for non-neoplasia is 5 mg/kg/day, based on several studies below. Aldous, 2/24/00.

142-159 137060 Stott, W. T., K. A. Johnson, K. S. Gilbert, J. R. Ormand, J. E. Battjes, “2,4-Dichlorophenoxyacetic Acid: Dietary Oncogenicity Study in B6C3F1 Mice - Two year final report”, The Dow Chemical Co., Midland MI, 3/10/95. Study ID: K-002372-063F. Mice were dosed with 2,4-D, 96.4% purity, in diets for 1 yr (10/sex/group) or 2 yr (50/sex/group) at dose levels of 0, 5, 150, or 300 mg/kg/day in diet. The present report concerns only results in females (see Record No. 124245 for limited results in males, which were terminated shortly after 1-yr interim sacrifice). NOEL = 5 mg/kg/day (kidney histopathology, particularly degeneration of cortical tubules, and hypercellularity of the descending portion of the proximal tubules). The primary kidney findings constitute a “possible adverse effect”, considering the
comparatively low NOEL. There is no oncogenic response in females. This segment of the mouse oncogenicity requirement (females only) is satisfactory. Aldous, 11/27/95. (See the following 1-liners for data on male mice).

142-176 156539 (supplemental histopathology for Record No. 143336, below). Spleens from term survivors of the low and intermediate dose levels were examined for histopathology, per U.S. EPA request. No additional tumors were found. DPR had not considered original report data to indicate tumor responses in the 1995 review. New data do not change the study status (no oncogenicity indicated in that study). Aldous, 12/30/99.

142-148 124245 Stott, W. T., Gilbert, K. S., Johnson, K. A., and Ormand, J. R.; “2,4-Dichlorophenoxyacetic Acid: Dietary Oncogenicity Study in B6C3F1 Mice - One Year Interim Report.” The Toxicology Research Laboratory, HES, Dow Chemical Co., Midland, Michigan. Date of Director's signature on interim report: 5/21/93. Additional information on male mice is in the protocol attached to this report, under DPR Record No. 124244. Estimated achieved dosages were 5.2, 152.3, and 308.1 mg/kg/day for females. It is reasonable to presume that achieved dosages for males were similarly close to target. Apparent NOEL = 5 mg/kg/day [hypercellularity in descending portions of proximal tubules in females (kidney histopathology was not evaluated in males), slight (2 g) body weight decrement in males, elevated kidney weights in females and apparently in males (organ weight data were not tabulated for males), and slightly increased alopecia in females. Hepatocellular adenomas in males]. Hepatocellular tumors are a “possible adverse effect.” Body weights in 300 mg/kg/day males were reduced by over 5 g by 1-year into the study, exceeding the MTD range. Hepatocellular adenoma incidences in males at interim sacrifice (10/group) were 0, 0, 2, and 4 for controls through high dose, respectively. Registrant is requested to be more direct in reporting tumor treatment responses, even in discontinued portions of oncogenicity studies. Not acceptable (interim report, and data limited almost entirely to females). Useful information. Kishiyama and Aldous, 8/16/93.

**142-163 143336 Stott, W. T., K. A. Johnson, K. S. Gilbert, J. R. Ormand, J. E. Battjes, “2,4-Dichlorophenoxyacetic acid: Dietary oncogenicity study in male B6C3F1 mice - Two year final report”, The Dow Chemical Co., Midland MI, 11/16/95. Study ID: K-002372-063MF. Fifty B6C3F1 male mice/group were dosed in diet with 2,4-D, purity 97.0 to 97.2%, at 0, 5, 62.5, or 125 mg/kg/day for 24 months. An additional 10/group were sacrificed for histopathology at 1 yr. NOEL = 5 mg/kg/day (slight increases in kidney weights; changes in kidney cortex, especially degeneration/regeneration of descending part of the proximal tubule). There was no effect on neoplasia, and no “adverse effects” were noted in this report. The present report, together with the final report on female mice (Record No. 137060) and the interim report containing limited information about effects on males at higher dose levels (Record No. 124245), suffice to fill the data gap for oncogenicity in mice. This report does not change the overall status of the mouse oncogenicity assessment [negative for females up to the MTD, evidence of positive effect for males at and above the MTD (i.e. 150 and 300 mg/kg/day, respectively), based on evidence of increased hepatocellular tumors at the latter dose levels]. Aldous, 1/16/96.

50721-049 112023 Protocol for Dow Chemical mouse dietary oncogenicity study. See interim report in Record No. 124245, above.
142-112 055305 “Oncogenicity study in mice with 2,4-dichlorophenoxyacetic acid (2,4-D).” Hazleton (Vienna, VA), 1/16/87. 2,4-D (97.5%) administered in diets of B6C3F1 BR mice at 0, 1, 15, and 45 mg/kg/day for 104 weeks. No oncogenic effect indicated. No adverse effect indicated, however risk assessment is appropriate due to the comparatively low NOEL in males only. NOEL = 1 mg/kg/day, based on changes in tubular epithelium (reduction of cytoplasmic vacuoles), dose related, at 15 and 45 mg/kg/day in males only. NOEL for females = 15 mg/kg/day (increased kidney weights at 53-week interim sacrifice without corresponding microscopic changes). NOT ACCEPTABLE, not upgradeable (Dose range not justified. Even though the NOEL in males was low, the minor kidney findings do not appear to be a limiting factor for the dosage range selection). (C. Aldous, 11/3/88).

142-120 071908 “Comments by the Technical Committee of the Industry Task Force on 2,4-D Research Data on the adequacy of the dose levels in the mouse oncogenicity and chronic rat studies with 2,4-D.” Interpretative comments by the Technical Committee of the Industry Task Force on 2,4-D Research Data on the adequacy of dose levels in the mouse and rat long-term studies. These comments were submitted with a cover memo by John D. Conner, Jr. (Counsel to the Task Force) dated 6/3/88. Considered by C. Aldous with respect to mouse oncogenicity study 112:055305. See rebuttal document of 5/17/89.

142-138 098299 Schulze, G. E., “Subchronic toxicity study in mice with 2,4-dichlorophenoxyacetic acid.” Hazleton Laboratories America, Inc., Rockville, 8/16/91. 2,4-D, Lot # 909, purity 96.1% was given in diets of 10 B6C3F1 mice/sex/group at 0, 1, 15, 100, and 300 mg/kg/day for 13 wk. Major findings were nuclear hyperchromatism in livers of most high dose mice, and tubular degeneration in kidneys of most high dose males. Some clinical chemistry changes and relative kidney weight changes involved the higher two dose levels. Apparent NOEL was 15 mg/kg/day. No worksheet or formal acceptability evaluation was done at this time (study type is not required for SB-950). No adverse effects were indicated. Study supports proposed dose levels of 15, 150, and 300 mg/kg/day as treatment levels for an upcoming oncogenicity study. Aldous, 3/19/93.

142-139 093149 (Exact duplicate of 142-138:098299).

GENOTOXICITY

Bacterial reverse mutation assay **
** 142-011 086185, “Mutagenicity Test on 2,4 Dichlorophenoxyacetic Acid in the Salmonella/Mammalian-Microsome Reverse Mutation Assay (Ames Test)”, (T. E. Lawlor and D. C. Valentine, Hazleton Laboratories America, Study No. 10979-0-401, 2/26/90). 2,4 Dichlorophenoxyacetic Acid, purity 96.1%, was tested at concentrations of 0 (DMSO), 100, 333, 667, 1000, 3330, or 6670 g/plate with metabolic activation (Aroclor 1254-induced rat liver) and at 0, 66.7, 100, 333, 667, 1000, or 3330 g/plate without metabolic activation. In a confirmatory test, 2,4-D was tested at 0, 333, 667, 1000, 3330, 6670, or 10000 g/plate with metabolic
activation and at 0, 100, 333, 667, 1000, 3330, or 6670 g/plate without S9 Mix. Assayed with Salmonella typhimurium strains TA98, TA100, TA1535, TA1537 and TA1538. Incubation time was for 48 hours. In both the initial and confirmatory assays, 2,4-dichlorophenoxyacetic Acid treatments did not significantly increase the number of revertants. **Negative and acceptable.** (Kishiyama and Gee, 7/26/91)

** 142-097 047257 Salmonella. “Mutagenicity Testing of Agent Orange Components and Related Chemicals (Salmonella typhimurium) (5/18/84, Journal article in: Toxicol. Appl. Pharmacol. 75:137-146). 2,4-D, 99%; Salmonella TA 1535, TA 1537, TA98, TA100 ± rat and hamster liver activation; 2,4-D and related compounds at 0, 33, 100, 333, 1000, 3333 or 10,000 g/plate after 20 min preincubation; no increase in reversion rate; triplicate plates - 2 labs ACCEPTABLE.** (Gee, 9-16-86).

** 50721-033 086186, “Mutagenicity Test on 2,4-D Dimethylamine Salt in the Salmonella/Mammalian-Microsome Reverse Mutation Assay (Ames Test)”, (T. E. Lawlor and D.C. Valentine, Hazleton Laboratories America, Study No. 10981-0-401, 2/26/90). 2,4-D dimethylamine salt, purity 66.18%, at concentrations of 0 (deionized water), 333, 667, 1000, 3330, 6670, or 10000 g/plate without and with metabolic activation (Aroclor 1254-induced rat liver) was assayed with Salmonella typhimurium strains TA98, TA100, TA1535, TA1537 and TA1538 by plate incorporation. Incubation time was 48 hours. 2,4-D Dimethylamine salt treatments in both the initial and repeat assay did not significantly increase the number of revertants. Evaluated as negative and unacceptable but upgradeable with further characterization of the test material. (Kishiyama and Gee, 7/29/91) A description of the test material is contained in 50721-048, record # 112026. The study is upgraded to acceptable status. Gee, 8/6/93.

50721-048 112026 Supplement to 086186. Contains a description of the test article and upgrades the study to acceptable status. Gee, 8/6/93.

** 50730-003 086187, “Mutagenicity Test on 2,4-D, 2-Ethylhexyl Ester in the Salmonella/Mammalian-Microsome Reverse Mutation Assay (Ames Test)”, (T. E. Lawlor and D.C. Valentine, Hazleton Laboratories America, Study No. 10980-0-401, February 26, 1990). 2,4-D, 2-Ethylhexyl Ester [grouped with 2,4-D free acid as of 7/23/91], purity of 98.0%, at concentrations of 0 (DMSO), 333, 667, 1000, 3330, 6670, or 10000 g/plate without and with metabolic activation (Aroclor 1254-induced rat liver) was assayed with Salmonella typhimurium strains TA98, TA100, TA1535, TA1537 and TA1538. Incubation period was for 48 hours. 2,4-D,2-Ethylhexyl Ester did not increase the number of revertants in either the initial or repeat assay. **Negative and acceptable.** (Kishiyama and Gee, 7/23/91)

142-097 047262 2-pg discussion of mutagenicity, with no reviewable data. No Med Tox review. (Aldous, 7/31/91).

Mutagenicity: In vitro mammalian cell assay

There is no study of this type on file. There are four accepted bacterial mutagenicity studies, above, all of which are negative.

Mutagenicity: In vivo cytogenetics

** 142-011 086188, “Mutagenicity Test on 2,4-Dichlorophenoxyacetic Acid In Vivo Mouse Micronucleus Assay”, (J. L. Ivett, Hazleton Laboratories America, Study No. 10979-0-455, 2/27/90). 2,4-Dichlorophenoxyacetic acid, purity 96.1%, administered as a single dose (gavage) at 0 (corn oil), 40, 133, or 400 mg/kg to 5 ICR mice/sex/group. Bone marrow polychromatic erythrocytes were harvested at 24, 48, and 72 hours after administration. Negative controls were harvested at 24 hours only. The test substance did not induce a significant increase in micronuclei in bone marrow polychromatic erythrocytes. Negative and acceptable. (Kishiyama and Gee, 7/26/91)

142-127 086231, “Single Acute Exposure Dose Selection Study on 2,4 - Dichlorophenoxyacetic Acid”, (J. L. Ivett, Hazleton Laboratories America, HLA Study No. 10979-0-459-PO, 2/27/90). 2,4 - Dichlorophenoxyacetic Acid, purity 96.1%, administered by gavage (single dose) at concentrations of 300, 675, 1050, 1425, or 1800 mg/kg to 3 ICR mice/sex/group. LD50 = 563 mg/kg for both males and females. Mortality was within 3 days. This study provided satisfactory information for selection of doses for a subsequent in vivo bone marrow micronucleus assay (above). (Kishiyama and Gee, 7/30/91)

** 50721-033 086189, “Mutagenicity Test on 2,4-D Dimethylamine Salt In Vivo Mouse Micronucleus Assay”, (J. L. Ivett, Hazleton Laboratories America, Study No. 10981-0-455, 2/27/90). 2,4-D Dimethylamine Salt, purity 66.18%, administered a single dose (gavage) at concentrations of 0 (deionized water), 60, 200, or 600 mg/kg (not adjusted for purity) to 5 Sprague-Dawley ICR mice/sex/group. Bone marrow polychromatic erythrocytes were harvested at 24, 48, and 72 hours after administration. The test substance did not induce a significant increase in micronuclei in bone marrow polychromatic erythrocytes. Evaluated as negative, unacceptable but possibly upgradeable with further information on the test material. (Kishiyama and Gee, 7/25/91) The requested information on the test material was submitted in 50271 048 112026 and the study is upgraded to acceptable status. Gee, 8/6/93.

50271-048 112026 Supplemental data for 086189 containing a description of the test material used. The study has been upgraded to acceptable status. Gee, 8/6/93.

50721-034 086235, “Single Acute Exposure Dose Selection Study on 2,4-D Dimethylamine Salt”, (J. L. Ivett, Hazleton Laboratories America, Study No. 10981-0-459-PO, 2/27/90). 2,4-D
dimethylamine salt, purity 66.18%, administered by gavage (single dose, intubation) at concentrations of 400, 800, 1200, 1600, or 2000 mg/kg to 3 ICR mice/sex/group. LD50 = 976 mg/kg (95% confidence limits 739 and 1209 mg/kg) for males and females, combined. The report does not indicate if purity was considered. Mortality was within 3 days. This study provides information for the selection of doses for a subsequent in vivo bone marrow micronucleus assay (above). (Kishiyama and Gee, 7/29/91)

** 50730-003 086190, “Mutagenicity Test on 2,4-D, 2-Ethylhexyl Ester In Vivo Mouse Micronucleus Assay”, (J. L. Ivett, Hazleton Laboratories America, Study No. 10980-0-455, 2/27/90). 2,4-D, 2-Ethylhexyl Ester, purity 98.0%, LOT # 04KF54479, was administered as a single dose by gavage at 0 (corn oil), 50, 167, or 500 mg/kg to 5 ICR mice/sex/group. Bone marrow was harvested at 24, 48, and 72 hours after dosing. Polychromatic erythrocytes were scored for micronuclei and the PCE/NCE ratio determined. One thousand PCE’s were scored per animal. The test substance did not induce a significant increase in micronuclei in bone marrow polychromatic erythrocytes. Negative and acceptable. (Kishiyama and Gee, 7/24/91)

50730-004 086236, “Single Acute Exposure Dose Selection Study on 2,4 - D - 2 - Ethylhexyl Ester”, (J. L. Ivett, Hazleton Laboratories America, Study No. 10980-0-459-PO, 2/27/90). 2,4 - D - 2 - Ethylhexyl Ester, purity 98.0%, administered by gavage (single dose, intubation) at concentrations of 400, 800, 1200, 1600, or 2000 mg/kg to 3 ICR mice/sex/group. LD50 = 673 mg/kg for both males and females. Mortality was noted within 3 days. This study provides information for the selection of doses for a subsequent in vivo bone marrow micronucleus assay (above). Supplemental data. (Kishiyama and Gee, 7/25/91)

142-097 047259 “Distribution and Cytogenetic Test of 2,4-D and 2,4,5-T Phenoxyacetic Acids in Mouse Blood Tissues.” (1976, Publ.: Chem.-Biol. Interactions 14:291-92, 2,4-D Task Force, Wallenberg Lab, Stockholm) Male CBA mice, 3 at 100 mg/kg, sacrificed at 24 hours or 7 days; i.p. injection; some decrease in % PCE's at 24 hours (not at 7 days); no increase in micronuclei; UNACCEPTABLE - males only, times of sacrifice, other deficiencies. (Gee, 9-16-86).

Mutagenicity: DNA Damage ** † (no longer a mandated test classification)

** 142-011 086191, “Mutagenicity Test on 2,4-Dichlorophenoxyacetic Acid (2,4-D) in the In Vitro Rat Primary Hepatocyte Unscheduled DNA Synthesis Assay”, (M. A. Cifone, Hazleton Laboratories America, Inc., Study No. 10979-0-447, 2/28/90). 2,4-Dichlorophenoxyacetic Acid, purity 96.1%, at concentrations of 0 (DMSO), 2.42, 4.85, 9.69, 24.2, 48.5, or 96.9 g/ml, was assayed with primary rat hepatocytes. Treatment period was 18 hours. 2,4-Dichlorophenoxyacetic acid did not induce unscheduled DNA synthesis. Negative and acceptable. (Kishiyama and Gee, 7/26/91)

** 50721-033 086192, “Mutagenicity Test on 2,4-D Dimethylamine Salt in the In Vitro Rat Primary Hepatocyte Unscheduled DNA Synthesis”, (M.A. Cifone, Hazleton Laboratories America, Inc., Study No. 10981-0-447, 2/28/90). 2,4-D Dimethylamine Salt, purity 66.18%, at nominal concentrations of 0 (deionized water), 2.5, 5.0, 10.0, 25.0, 50.0, or 100.0 g/ml were assayed with primary rat hepatocytes. Concentrations were not adjusted for purity. Treatment period was 18.3 hours. 2,4-D Dimethylamine did not induce unscheduled DNA synthesis under the test conditions. Evaluated as unacceptable but possibly upgradeable. No individual data
With the submission of 048 112027, the study is upgraded to acceptable status. Gee, 8/6/93.

50721-048 112027 Supplement to 033 086192. Contains an explanation about the test article, historical controls for ≥ 5 net nuclear grains and the individual slide data, upgrading the study to acceptable status. No worksheet. Gee, 8/6/93.

** 50730-003 086193, “Mutagenicity Test on 2,4-D, 2-Ethylhexyl Ester in the In Vitro Rat Primary Hepatocyte Unscheduled DNA Synthesis Assay”, (M.A. Cifone, Hazleton Laboratories America, Inc., Study No. 10980-0-447, 2/28/90). 2,4-D, 2-Ethylhexyl ester, 98.0% purity, at concentrations of 0 (DMSO), 0.501, 1.00, 2.50, 5.00, 10.0, or 25.0 g/ml, was assayed with primary rat hepatocytes. The treatment period was 19 hours. 2,4-D, 2-Ethylhexyl ester, did not induce unscheduled DNA synthesis. Negative and acceptable. (Kishiyama and Gee, 7/24/91)

142-097 047260 “Phenoxyacids as Inhibitors of Testicular DNA Synthesis in Male Mice.” (2,4-D Task Force, 1979 publ. in Bull. Environm. Contam. Toxicol. 21: 89-92, J. P. Seiler.) 2,4-D, purity not stated. DNA synthesis in male mice (number not given); 200 mg/kg orally, 3-5 hours; radioactive thymidine incorporated into testicular DNA was measured. Possible adverse effect indicated: Inhibition of testicular DNA synthesis of 29%. Incomplete, UNACCEPTABLE. (Gee, 9-16-87).

Note: The initial evaluation considered there to be a possible adverse effect. This was based, in part, on a 2,4-DB study erroneously submitted with 2,4-D data. The 1-liner for that study has now been deleted from the 2,4-D Summary of Toxicology Data. There remains one inadequate study (DNA synthesis inhibition, Record No. 047260) with a possible adverse effect. There are, however, several negative studies in the “DNA Effects” classification which are considered to be acceptable. These negative, acceptable studies do not allow the positive study to be ignored, since the positive study was fundamentally different in design and represented an in vivo mammalian finding. There remains “possible adverse effect” for “DNA Effects.” J. Gee, 8/12/93.

REPRODUCTIVE TOXICITY, RAT **†

The most recent of the two following reproduction studies (Vols. 100-104) is by far more consistent with modern guidelines than the older study. Both studies indicated “possible adverse effects” (marked gestational and neonatal losses at comparable dose levels: 80 mg/kg/day is approximately equivalent to 1500 ppm in rat studies). Both studies suggested comparable NOEL’s (20 mg/kg/day vs 500 ppm). The NOEL from the acceptable study (100:047265) is more reliable for possible risk assessment. Aldous, 11/04/88.

**142-100 to -104 047265-047269 “Dietary Two-Generation Reproduction Study in Fischer 344 Rats with 2,4-Dichlorophenoxyacetic Acid.” (7/26/85, WIL Research Laboratories, Inc. Project No. WIL-01137). 2,4-D, 97.5% administered in diet to 30/sex/group at nominal levels of 0, 5, 20 or 80 mg/kg/day - 2 litters, 2 generations. High dose was discontinued after weaning of F1b litters due to severe prenatal and neonatal losses. Because of these losses, the study was considered by CDFA to indicate a possible adverse reproductive effect at 80 mg/kg/day nominal dosage to the F0 parents (J. Gee, 9/24/86). Actual administered dosages were
appreciably higher than nominal during much of gestational and lactation periods; elevated as much as 66% over target levels at times in the high dose group. Parental and reproductive effects Noel’s were 20 mg/kg/day, based on maternal weight losses or weight gain decrements during gestation and lactation, and also upon reduced gestational and neonatal survival (F1b litter 80 mg/kg/day group gestation survival was 31.7%, with total litter losses in 15 high dose group F0 dams). The 11/3/88 review did not change study status (acceptable, possible adverse effects), but confirmed that there was some maternal body weight effect attributable to treatment at the high dose. The adverse effect indication was not removed, since markedly reduced gestational and neonatal survival was observed, which was not accompanied by a commensurate degree of maternal toxicity. (J. Gee, 9/24/86, C. Aldous, 11/3/88.)

142-089 028385 Interim report to 100:047265, above.

142-111 055303 “Chronic Toxicity of 2,4-Dichlorophenoxyacetic Acid in Rats and Dogs.” (Toxicol. Appl. Pharmacol. 20:122-129, 1971). 2,4-D technical was administered to rats in a three generation, 2 litters/generation reproduction study at 0, 100, 500 or 1500 ppm in the diet. Ten males and 20 females/group. Report does not discuss parental toxicity (except to note that fertility was not affected). Apparent reproductive effects NOEL = 500 ppm (reduced pup survival and weanling weight was observed at the high dose). UNACCEPTABLE, not upgradeable: No individual data, no necropsy or histopathology, no mating records, no evaluation of possible parental toxicity, relevant parameters not reported (such as birth weights, gestation time, and various reproductive indices), and other major variances from guidelines. Only one data table provided. The sponsor has requested EPA for copies of the full report which will be forwarded to CDFA for review (ref: document #142-111, letter dated 3/11/87). (D. Shimer/Y. Luthra, 12/3/87; re-examined without additional worksheet, C. Aldous, 8/10/88).

142-0245; 253049; “2,4-D: An F1-Extended One Generation Dietary Toxicity Study in CRL:CD(SD) Rats”; (M.S. Marty, et. al., Toxicology & Environmental Research and Consulting, The Dow Chemical Company, Midland, MI; Study ID. 081104; 1/30/10); In the P generation, twenty seven Sprague-Dawley rats/sex/group (unless otherwise noted) received 0, 100, 300, 600 (females only) or 800 ppm (males only) of 2,4-D Acid (lot no. 2006 2433 8006-USA; purity: 97.85% (2007) 98.6% (2008)) for 4 weeks during the premating period, during the mating period (high dose males received 600 ppm during this period), and during the 3-week gestation and lactation periods ((M) 0, 5.51, 16.6, 45.3 mg/kg/day, (F) (range from premating through lactation) 0, 6.97 to 9.47, 20.6 to 28.7, 40.2 to 57.5 mg/kg/day). At the time of weaning, F1 generation cohorts designated as Sets 1a, 1b, 2a, 2b and 3 were selected. Set 1a was treated up to post natal day (PND) 70 ((M) 0, 9.24, 28.4, 76.6 mg/kg/day, (F) 0, 9.56, 28.8, 57.9 mg/kg/day). These animals were assessed according to general toxicity parameters. Set 1b was treated up to PND 60 and were assessed for neurotoxicity parameters ((M) 0, 9.88, 29.5, 81.7 mg/kg/day, (F) 0, 10.1, 30.0, 59.2 mg/kg/day). Set 2a was treated up to PND 73 and was assessed for immunotoxicity in accordance with the sheep red blood cell antibody-forming cell assay (SRBC-AFC assay) ((M) 0, 9.15, 28.4, 75.3 mg/kg/day, (F) 0, 9.66, 28.7, 58.4 mg/kg/day). Set 2b was treated up to PND 93 and was assessed for immunotoxicity in the natural killer cell
assay (NK assay) ((M) 0, 8.67, 25.8, 71.8 mg/kg/day, (F) 0, 9.05, 26.7, 55.3 mg/kg/day). Set 3 was treated up to PND 139 and was assessed for specific reproductive parameters ((M) 0, 6.83, 20.9, 55.6 mg/kg/day, (F) 0, 7.59, 23.3, 46.7 mg/kg/day) (no mating was performed because no treatment-related effects on reproduction indices were noted for the P generation). In addition, a satellite P generation cohort of 12 females/group received 0, 10, 300 or 600 ppm of the test material in the diet for 2 weeks in the premating period, during the mating period and for 17 days during the gestation period. Effects on reproduction were assessed. For those pups which were weaned on PND 22 and were not included in the F1 generation cohorts, two subsets were selected. One group of 12 animals/sex/group was perfused whole-body and examined for neuropathological lesions. The other group of 10 animals/sex/group was evaluated for serum thyroid hormone levels and examined by conventional histopathological techniques. No unscheduled deaths occurred in the P generation during the study. The mean body weights of these animals were not affected by the treatment. There was no apparent treatment-related effect upon the food consumption of the P generation adults. No treatment-related effects upon the hematological, clinical chemical or urinalytical parameters of the P generation were noted. The length of the estrus cycle of the P generation females was not affected by the treatment. The reproductive indices of the females in the P generation were not affected by the treatment. The numbers of sperm in the testes and epididymis and the motility of these sperm were not affected. In the necropsy examination, the mean absolute and relative kidney and seminal vesicle weights of the 800 ppm males and the mean absolute and relative seminal vesicle weights of the 300 ppm males in the P generation were greater than the control values (p<0.05). In the histopathological examination, very slight to slight degeneration of the proximal convoluted tubules of the 800 ppm P generation males was noted. (No lesions were noted in the seminal vesicles). For the females in the P generation, satellite cohort, there was no treatment-related effect upon the reproduction indices. In the thyroid hormone assay, the serum T3 were slightly lower for the 600 ppm group (NS). The serum TSH level for these dams was slight higher (NS). Histological evaluation of the thyroids of these animals revealed a decreased cell size, very slight, for 3 of the 12 dams in this group. For the pups in the F1 generation, the mean body weights of the 600 ppm offspring were less than the control group during the lactation period (NS). This effect persisted during the first weeks post-weaning. During this period, the treatment regimen for the high dose males was raised to 800 ppm. The food consumption of these male pups during the first weeks after weaning was also less than that of the control group. For the F1 generation, there was no apparent treatment-related effect upon anogenital distance for the respective sexes or the loss or retention of nipples for the males and females, respectively. The thyroid hormone levels in the plasma of the PND 4 pups were not affected by the treatment. At PND 22, T4 levels of the males in the 600 ppm group were lower than that of the control (p<0.05). This effect was no longer evident at PND 62-64. No effect on organ weights was evident in the necropsy of the non-perfused PND 22 weanlings. No treatment-related lesions were noted in the histological examination of their tissues/organs. Neuropathological evaluation of the F1 generation weanlings did not reveal any treatment-related lesions. No effect was noted in the morphometric evaluation of the brain. Preputial separation of the 800 ppm males was delayed slightly from that of the control group (p < 0.05). The time to vaginal opening for the F1 generation females was not affected by the treatment. There was no treatment-related effect noted in the results for the hematology, clinical chemistry or urinalysis of the F1 generation, Set 1a. The mean relative kidney weights of the 300 and 600 ppm females in this set were greater than the control group value (p <0.05). The mean absolute liver weight of the 800 ppm males was less than that of the
control group (p < 0.05). In the histopathological evaluation of the kidneys of the F1 generation Set 1a, the 800 ppm group males and 600 ppm females exhibited an increased incidence and/or severity of degeneration in the proximal convoluted tubules (very slight to slight). For F1 generation Set 1b, there were no treatment-related responses noted in the FOB or the motor activity assessments. The neuropathological evaluation and brain morphometry did not reveal any treatment-related lesions. In the acoustic startle response evaluation, the 800 ppm males demonstrated less of an habituation to the effect, albeit not statistically significant. For the F1 generation Set 2a, there was no treatment-related effect on the brain, spleen or thymus weights. In the SRBC Antibody Forming Cell assay, the number of plaques (formed from the complement-mediated lysis of the SRBC) per spleen or per million splenic cells was not affected by the treatment. The positive control was functional. There was no treatment-related effect on the testes and spleen of the F1 generation Set 2b. In the Natural Killer Cell assay, treatment with the test material did not affect the NK activity in the assay over the range of effector cell: target cell ratios in comparison to the control. The positive control was functional. The estrus cycle of the females in the F1 generation Set 3 was not affected by the treatment. Ovarian follicle counts were not affected by the treatment. Sperm morphology and motility of the males in this set were not affected by the treatment. The mean absolute kidney weight of the 600 ppm females was greater than that of the control group (p < 0.05). However, the relative kidney weight of this group was not statistically significant. In the histopathological evaluation of the kidneys of the F1 generation Set 3, the 300 and 800 ppm group males and 600 ppm females exhibited an increased incidence and/or severity of degeneration in the proximal convoluted tubules (very slight to slight). In the toxicokinetics evaluation, the test material uptake for both sexes was proportional to the dietary concentrations of the test material for the F1 generation. However, the plasma levels of the test material increased at a greater proportional rate with the ratio of the plasma levels ranging between 15 and 16 times the 100 and 800 ppm treatment groups for the males and between 19 and 36 times for the 100 and 600 ppm groups for the females. In addition, the circulating levels of the test material in the plasma of the female rats on PND 63 were 2-to 5-fold higher than the levels observed in the plasma of the males based on the AUC0-24 hr values. The difference was more pronounced as the dose level increased, despite the fact that females were exposed to 600 ppm compared to males who received 800 ppm of the test material in their diet. By PND 84, the intake of the test material had declined from 16 to 25% for the males and from 5 to 14% for the females. The differential plasma levels were also less, being 1.7 to 2.1 times higher for the females based on the AUC0-24 hr values. No adverse effect was noted in the reproductive toxicity, developmental neurotoxicity or immunotoxicity evaluations at the highest treatment levels (note: concurrent positive controls were not included in the developmental neurotoxicity evaluation). Possible adverse effect: very slight to slight degeneration of the proximal convoluted tubules in the kidney. Parental NOEL: (M/F) 300 ppm (M) 16.6 mg/kg/day, (F) 20.6 to 28.7 mg/kg/day)(based upon very slight to slight degeneration of the proximal convoluted tubules in the kidneys of the 800/600 ppm treatment and the reduced cell size in the thyroid of the 600 ppm females in the P generation); Reproductive NOEL: 600 ppm (F) 40.2 mg/kg/day) (based upon the lack of a treatment-related effect at 600 ppm); Developmental NOEL: 300 ppm ((F) 28.7 mg/kg/day) (based the reduced mean body weights of the pups in the 600 ppm group during the lactation period). Rat Subchronic Dietary Toxicity NOEL: (M) 100 ppm (6.83 mg/kg/day) (based on the incidence of very slight to slight degeneration in the proximal convoluted tubules of the kidneys of the males in the 300 ppm treatment group of the F1 generation (Set 3), (F) 300 ppm (23.3
mg/kg/day) (based on the incidence of very slight to slight degeneration in the proximal convoluted tubules of the kidneys of the females in the 600 ppm treatment group of the F1 generation (Set 3); **Study supplemental** (study was not performed according to a standard guideline protocol). (Moore 2/23/12)

142-0245; 253049 (amendment to previous review under this record number). The original review by Moore sought positive control validation studies to support the developmental neurotoxicity components of Record No. 253049. Validation studies were supplied in DPR Document Nos. 142-0257 and -0258, Record Nos. 276128 to 276142. Summaries are described in the 2,4-D Summary of Toxicology Data under the “Neurotoxicity” heading and subheading of “Additional data to support neurotoxicity studies, including lab validation.” Validation data address neurohistopathology, brain morphometric evaluation, motor activity, FOB procedures, and auditory startle response. These studies support the neurotoxicity aspects of the present study. Although Record No. 253049 did not include all phases of a guideline developmental neurotoxicity study, it did address the concerns of a recent U.S. EPA data call-in. No further information is requested by DPR at this time regarding developmental neurotoxicity studies. Aldous, June 12, 2014.

DEVELOPMENTAL TOXICITY

Rat

142-099 047264 Nemec, M. D., E. J. Tasker, K. M. Werchowski, and M. D. Mercieca, “A Teratology Study in Fischer 344 Rats with 2,4-dichlorophenoxyacetic acid”, (WIL Research Laboratories, Inc., 3/2/83). 2,4-D acid (97.5%) administered by gavage in corn oil to 35 female Fischer 344 rats per group at 0, 8, 25, and 75 mg/kg/day. Study was initially classified as unacceptable but upgradeable on receipt of dosing solution analysis, and a “possible adverse effect” was attributed to slight indications of delayed ossification (review of J. Gee, 9/25/86). The latter review placed maternal and developmental effects Noel’s at 75 and 25 mg/kg/day, respectively. The report was re-examined in response to the 3/11/87 rebuttal submission (Document 142-111, Enclosure 2, no Record #). The August, 1988 review concluded that the study is ACCEPTABLE, and that there is no adverse effect, and that the maternal and developmental effects Noel’s were both 25 mg/kg/day. (C. Aldous, 8/15/88.)

EPA 1-liner: Maternal, teratogenic NOEL > 75 mg/kg (HTD) Fetotoxic NOEL= 25 mg/kg. Fetotoxic LEL = 75 mg/kg (for delayed ossification)

142-089 028384 Incomplete version of final report (099:047264).

142-089 028386 “A range-finding teratology study in Fischer 344 rats with 2,4-dichlorophenoxyacetic acid.” A retrospective dose range-finding study for 099:047264. WIL Research Laboratories, Inc., 5/17/83. Levels tested by gavage in Fischer 344 rats: 0, 75, 100, 150, 200 and 250 mg/kg in corn oil, days 6-15 of gestation. There were 1/10 and 3/10 deaths at the 200 and 250 mg/kg/day levels with deaths attributed to cerebral hemorrhage. At 200 and 250 mg/kg/day, there were total litter losses in all dams. Two of 8 pregnant dams at 150 mg/kg/day had total litter losses. These losses are considered to be treatment effects. Maternal body weight gains were clearly diminished at 150 mg/kg/day and above, and very marginally
diminished at 75 and 100 mg/kg/day. There is thus an equivocal LEL of 75 mg/kg/day to support dose selection of the primary study (099:047264); however CDFA reviewers, J. Gee, Y. Luthra, and C. Aldous all have indicated that a somewhat higher maximum dosage would have been preferable in the primary study. [Reviews by Gee, 9/10/85 and 9/29/86, (study examined by Y. Luthra in Dec., 1987 without separate written review), C. Aldous, 8/3/88 (included in re-examination of 099:047264)].

EPA 1-liner: Maternal LEL = 150 mg/kg (reduction in food consumption & body weight loss; Maternal NOEL = 100 mg/kg.

**142-132 095866 Lochry, E. A., “Developmental toxicity (Embryo-fetal toxicity and teratogenic potential) study of 2,4-D dimethylamine salt (2,4-D-DMA) administered orally via gavage to Crl:CD®BR VAF/Plus® presumed pregnant rats.” Argus Research Laboratories, Inc. (Protocol No. 320-001), 11/15/90. Pregnant rats, about 105 days old, were allocated to groups of 25 at dose levels of 0, 12.5, 50, and 100 mg/kg/day [free acid equivalent] of 2,4-D-DMA. Treatment by gavage with aqueous solutions was done daily from days 6 to 15 of gestation. No adverse effects were indicated. Maternal NOEL = 12.5 mg/kg/day (minor body weight decrements associated with a minor decrease in food consumption during treatment at 50 mg/kg/day). At 100 mg/kg/day, there were greater decrements in body weight gain and food consumption, and several dams displayed ataxia and decreased motor activity. Developmental NOEL = 50 mg/kg/day (slight, but statistically significant reduction in fetal body weights; increased skeletal alterations, including wavy and/or incompletely ossified ribs, incompletely and/or unossified sternebrae). A pilot study (reported in this record) had shown increased early resorptions and “small or absent eye bulges” at 200 mg/kg/day, along with more marked maternal toxicity. The primary study did not elicit any malformations up to 100 mg/kg/day, nor did that dose increase resorptions. Study is acceptable (previously considered unacceptable, based on insufficient characterization of test article, and a need for evidence of stability of dosing solutions under test conditions). See Record No. 112021 for data which allowed an upgrade of the primary study. Aldous, 7/30/91, 3/19/93.

50721-047 112021 [Requested information about stability of dosing material]. Additional data were provided. Argus Research Corp. performed retrospective sample preparation, and analysis was provided by Lancaster Laboratories, Inc. Date of these additional data: 12/23/91. The original review (under Record No. 095866) had requested (1) further characterization of test article, and (2) evidence of stability of dosing solutions. The present submission addresses both issues, allowing a change of report status to acceptable. Test article, Lot # 04FD31349, is tech. 2,4-D dimethylamine salt (66.18% A.I., 55.5% 2,4-D acid equivalent). It is manufactured at only one location, and the retrospective studies performed at Argus Laboratories used comparable material from the same source. Argus Laboratories prepared samples in the same manner as was done in the original study, and submitted freshly prepared samples, as well as other samples stored at RT for 7 days, at concentrations corresponding to low and high dose levels of the original study. There was no decomposition during the 7-day period. Aldous, 3/19/93.

142-090 028387 “Teratology Study in Fischer 344 Rats with 2,4-Dichlorophenol, Final Report.” (3/31/83, WIL). 2,4-Dichlorophenol, metabolite of 2,4-D. Purity not stated. 34 females per group were given 0, 200, 375 or 750 mg/kg/day by oral gavage, days 6 - 15. NOTE: Tables
9 - 18 (individual data) are not included with the report. UNACCEPTABLE in support of 2,4-D data requirements, but useful data. Four out of 34 dams died in the 750 mg/kg/day group. Only this high dose group had quantifiable evidence of maternal toxicity, largely limited to body weight gain decrements, which were statistically and probably biologically significant. Weight gain decrements in other groups were occasionally statistically significant, but very small in magnitude and of no apparent physiological significance. Fetal findings were not treatment-related, except possibly for slightly decreased ossification of sternebrae #1 - #4 and of vertebral arches in the 750 mg/kg/day group only. Original review by J. Remsen (Gee) indicated “possible adverse [reproductive] health effects”, citing decreased maternal body weights (albeit usually very small decrements) at all doses [J. R. (Gee), 9/10/85]. Status changed to supplemental study, with no indication of adverse effects [Y. Luthra (no written review), 4/1/88; and C. Aldous, 11/3/88]. [Note: no additional data are presently required of this study].

Rabbit

142-131 095865 Hoberman, A.M., “Developmental toxicity (embryo-fetal toxicity and teratogenic potential) study of 2,4-dichlorophenoxyacetic acid (2,4-D acid) administered orally via stomach tube to New Zealand White rabbits.” Argus Research Laboratories, Inc., Project No. 320-003, 12/12/90. Twenty artificially inseminated dams/dose were administered 0, 10, 30, or 90 mg/kg/day 2,4-D technical (96.1%) by gavage in aq. 0.5% methylcellulose on days 6-18 of gestation. **No adverse effects. Maternal-fetal NOEL = 30 mg/kg/day (2/18 high dose dams had abortions). Developmental NOEL = 30 mg/kg/day (in addition to abortions, noted above: the percentage of males among live fetuses was substantially higher in the 90 mg/kg/day group than in other groups). A pilot study (same record) showed high mortality to does at 200 mg/kg/day, and it also appeared that 100 mg/kg/day caused one abortion and necessitated one moribund sacrifice out of a group of 4 does: indicating a steep dose-response curve for maternal toxicity. **Acceptable, Aldous, 7/30/91.**

Hamster

142-111 055304 “Teratogenic studies with 2,4,5-T and 2,4-D in the hamster”, FDA, Washington, D.C., in Bull. Environ. Contam. Toxicol. 6 (6):559-567 (1971). 2,4-D, either Dow Chemical Co. “Tech.”, Dow Chemical Co. “Current Production”, or Hercules Powder Co. “Current Production”; 7 to 12 golden Syrian hamster dams/dose/test article dosed by gavage on days 6-10 at dosage levels of 100, 60, 40, and (in case of Dow “Tech” only) 20 mg/kg/day. There were 86 control dams. There was no reported maternal toxicity. A possible increase in fused ribs over control levels was suggested at 60 to 100 mg/kg/day, however group sizes were too small and data too limited for meaningful evaluation. No adverse effects indicated, considering the limited evidence of a treatment effect, and the appreciable dose level of the apparent NOEL. Study is UNACCEPTABLE, and not upgradeable. No further information is required of this report. (C. Aldous, 8/8/88).

NEUROTOXICITY

Acute neurotoxicity, rat

**142-156 132078 Mattsson, J. L., R. J. McGuirk, and B.L. Yano, “2,4-Dichlorophenoxyacetic acid (2,4-D): Acute neurotoxicity study in Fischer 344 rats”, The Dow Chemical Co., Midland
MI, Jan. 5, 1994. Laboratory Project Study ID# K-002372-066. Ten rats/sex/group were dosed once by gavage with 2,4-D (96.6%) in corn oil at 0, 15, 75, or 250 mg/kg. Motor activity and FOB were assessed on days -1, 1 (6 hr after treatment), 8, and 15. During the first few days after treatment, rats received detailed clinical examinations. Five/sex/group were then necropsied on day 15 following in situ perfusion, and examined microscopically for nervous system damage. High dose rats commonly showed incoordination (awkward placement of paws) and abnormal gait (slight knuckling of forepaws) during the FOB on day 1. These signs steadily decreased over the next 3 days, and were not seen thereafter. Two 75 mg/kg rats also had an awkward gait on day 1 (only one of these, a female, showed sufficient change to be considered clearly treatment-related). Motor activity of high dose rats was sharply decreased on day 1 only. Other in vivo measures were negative. NOEL = 15 mg/kg (slight gait abnormalities on day 1 only). There were no histopathologic changes. Study is acceptable, with no adverse effects. Aldous, 12/11/95.

NOTE: A negative rat study was submitted, possibly an incomplete report, which did not indicate effects in grip strength or in microscopic evidence of central or peripheral nervous system damage following repeated dermal exposure to 2,4-D dimethylamine salt. No worksheet was performed nor required (C. Aldous, 8/11/88, Vols. 087 and 098, Record # 028382, and duplicate record #047263). U.S. EPA requested additional rat neurotoxicity studies in the Guidance Document of Sept. 1988. Rat acute and chronic neurotoxicity studies appear to have been in this section appear to have been submitted in response to that request.

90-day neurotoxicity, rat **‡ (this was a 1-yr exposure)
**142-157 132079 Mattsson, J. L., T. K. Jeffries, and B.L. Yano, “2,4-Dichlorophenoxyacetic acid (2,4-D): Chronic neurotoxicity study in Fischer 344 rats”, The Dow Chemical Co., Midland MI, 6/28/94, Laboratory Project Study ID# K-002372-064N. Ten rats/sex/group were assigned to the neurotoxicity portion of a chronic study. Rats received 0, 5, 75, or 150 mg/kg/day 2,4-D (96.4%) for 1 yr. Motor activity and FOB were assessed pre-exposure, and at months 3, 6, 9, and 12. Five/sex/group were necropsied at 12 months, following in situ perfusion, and controls and high dose rats were examined microscopically for nervous system damage. Histopathology examinations included eyes (retina and optic nerve), for which intermediate groups were examined because high dose effects were found. NOEL = 5 mg/kg/day (modest, dose-related decrements in body weights were observed at 75 to 150 mg/kg/day). A slight increase in urine quantity in high dose females was possibly treatment-related. The major finding germane to neurotoxicity evaluation was bilateral retinal degeneration in 150 mg/kg/day females (a “possible adverse effect”). The NOEL for neurotoxicity = 75 mg/kg/day. Study is acceptable. Aldous, 12/04/95.

Developmental neurotoxicity, rat (see record 253049 under reproductive toxicity)

NOTE: There is no stand-alone developmental neurotoxicity study, however Record No. 253049, which was a complex study design, involved treatments of parental rats for 4 weeks pre-treatment, through gestation and lactation, with treatments continuing in offspring until they were of age for particular evaluations. Neurotoxicity tests included neurohistopathology and associated morphometric measurements at PND 22 and 60, and FOB plus motor activity assessments at about PND 60: none of these indicated untoward effects. This study design
responded to a U.S. EPA data call in, and addressed U.S. EPA developmental neurotoxicity data requirements. The original review of Record No. 253049 requested neurotoxicity validation studies, which were supplied (see heading for “Additional Data . . .” below). No further data of this type is currently required by DPR. Aldous, 6/12/14.

Delayed neurotoxicity, hen (not required at this time)
Hen neurotoxicity studies are not required at this time.

Additional data to support neurotoxicity studies, including lab validation

Additional data relating primarily to developmental neurotoxicity, particularly as data relate to DPR Document No. 00142-0245, Record No. 253049, are as follows:

00142-0257 276128 This is the DER for study 142-0245; 253049; “2,4-D: An F1-Extended One Generation Dietary Toxicity Study in CRL:CD(SD) Rats”; (M.S. Marty, et. al., Toxicology & Environmental Research and Consulting, The Dow Chemical Company, Midland, MI; Study ID. 081104; 1/30/10). EPA MRID for that study is 47972101. This exhaustive review concluded that the study is “acceptable/non-guideline.” The study addresses data call-in requirements for reproduction and fertility, developmental neurotoxicity, and immunotoxicity. No DPR review is relevant for this U.S. EPA review. Aldous, 5/22/14.

00142-0257 276130 Maurissen, J. P. J. et al., “Factors affecting grip strength testing,” Neurotoxicology and Teratology 25 (2003) 543-553. This article discusses effects of technique [load sampling rate, or trial angle (the gauge has an optimal direction of force)], sensory neuropathy (changes in peripheral sensory function may be reflected in grip strength assessment), or dietary restriction. No DPR worksheet, as this is not a study on the active ingredient. Aldous, 5/23/14.

00142-0257 276131 “An F1-Extended One Generation Reproductive Toxicity Study in CRL:CD(SD) Rats with 2,4-dichlorophenoxyacetic Acid”; M.S. Marty, et al., Toxicological Sciences (2013) 136 (2): 527-547. This is the published report of 142-0245; 253049, above.

00142-0257 276132 This is a brief description and illustration of the motor activity device used in Record No. 253049, above.

142-0257 276133 Marty, M. S., and A. K. Andrus, “Motor activity proficiency study using positive controls: effects of amphetamine and chlorpromazine,” The Dow Chemical Company, Midland, MI, March 5, 2007. Investigators evaluated baseline total and epochal motor activity counts using three rat strains (F344, CD, and Wistar-Han), both sexes, and different ages (PND 13, 17, 21, and 35, plus adults 7-9 weeks of age). In adult F344 rats of both sexes, low and high doses of amphetamine yielded graded motor activity increases, whereas chlorpromazine gave a negative dose-response. Baseline by epoch showed a clear reduction over the first four 10-min periods, showing normal accommodation. Chlorpromazine reduced activity in the initial periods, however controls had sufficiently reduced activity by the end of the period that there was no consistent treatment difference. Amphetamine activity was marginally higher than controls for
the first epoch, but amphetamine activity remained essentially constant through the session at 1 mg/kg (no accommodation), and accommodation was reduced at 0.25 mg/kg. Similar patterns held for the other strains of adult rats. Baseline accommodation of motor activity was not evident in PND 13 rats, but became progressively more apparent as rats matured to PND 35. Only PND 21 pups were evaluated with the two amphetamine and chlorpromazine: responses were qualitatively like those of adults. Data validate the test facility capacity for evaluating motor activity at all developmental ages tested. Aldous, 5/23/14.

00142-0257 276135 This is a one-page discussion of the challenges in calculating statistical power with repeated measures ANOVA hypotheses. This discussion is relevant FOB behavioral data in neurotoxicity studies. No worksheet (no data to review). Aldous 5/23/14.

142-0257 276136 Marable, B. R. “Validation of the auditory startle response system in rats,” The Dow Chemical Company, Midland, MI, 7/27/2000. Adult and 22-day pup male and female SD rats were tested for ASR peak response and ASR latency using clonidine (expected to suppress responses) at 0.04 and 0.08 mg/kg, or d-amphetamine (expected to enhance responses) at 4 or 8 mg/kg. The test system involved exposures to 5 blocks with ten trials per block in all cases. Amplitude showed a gradual reduction over time in both sexes and both ages for all treatments. Amplitude was generally elevated after d-amphetamine in adults of both sexes, with males showing the best-defined dose-response over the two dosages tested and also the largest magnitude of increased amplitude within blocks compared to untreated controls. The proportional decreases in amplitude of d-amphetamine after the first block were smaller than those of untreated controls. Clonidine amplitudes in adults were smaller than those of untreated controls in the first block. Amplitudes in clonidine adults diminished markedly in later blocks. Amplitude studies in pups found only small differences between untreated controls and d-amphetamine males and females. In contrast, clonidine amplitudes were markedly lower than controls in the first block, with the relative reductions even larger in subsequent blocks. ASR latency in adults did not show consistent effects of either positive control. ASR latency in pups showed no apparent effects during the first block in pups. Further, d-amphetamine had no evident effect on ASR latency at subsequent blocks. In contrast, the subsequent blocks in male and female pups showed consistent reduction in latency with clonidine treatment. In this regard, male pups showed a modest but rather consistent dose-response for clonidine, whereas in females there was no evident difference in ASR latency reduction over the two clonidine dose levels tested. In summary, data show that the test facility is capable of detecting treatment effects on ASR amplitude and latency with adult and weanling rats. Aldous, 5/27/14.

142-0258 276137 Marable, B. R. “Reflex modification of the auditory startle response in rats,” Dow Chemical Company, Midland, MI, 6/19/2002. Male Long-Evans rats were administered 0 or 16 mg/kg cisplatin, the latter being expected to raise the hearing threshold. Assessments were done 4 days after treatment. Auditory startle response (ASR) to a strong startle-eliciting stimulus [105 dB(A)] (designated as the S2 stimulus) was evaluated either without a pre-pulse stimulus (designated as the S1 stimulus). An effective S1 stimulus was expected to inhibit the ASR to the S2 stimulus. The S1 stimuli were deployed at various dB
levels, presented in random order, to determine whether cisplatin raised the S1 inhibition threshold. Testing was done at 4 or 16 kHz, each for both S1 and S2 stimuli. ASR peak amplitude without S1 stimulus was reduced in treated rats to about 30% of controls. Progressively higher S1 magnitudes reduced the S2 stimulus ASR at 4 and at 16 kHz in control and in cisplatin groups, but ASR was nearly always higher in controls than with cisplatin treatment. S1 stimulus strength required to reduce ASR to 50% of the amplitude observed without S1 stimulus in cisplatin rats was measurably higher than for controls. Study confirms laboratory capability to assess ASR in rats. Aldous, June 3, 2014.

142-0258 276138 Marable, B. R. and J. P. J. Maurissen, “Validation of an auditory startle response system using chemicals or parametric modulation as positive controls,” Neurotoxicology and Teratology 26 (2004) 231-237. This was a publication of information largely contained in the Dow Chemical Company study under DPR Document No. 142-0257, Record No. 276136. The present study provided the same auditory startle response as Record No. 276136 for adult and weanling rats, plus an evaluation of peak amplitude of PND 31 rats in response to a range of signal intensities, using an all-pass 10 Hz-50 Hz white noise generator at 70 to 120 dB, as 50 millisecond bursts. The latter trial found a sharp dose-response in the range of 80 to 100 dB, with no additional response between 100 to 120 dB. Useful validation study. Aldous, June 3, 2014.

142-0258 276139 [Validation study for auditory startle response (historical control)]. This record contains three small tables, without further details. Probably the investigator was B. R. Marable, who had done similar studies. The first two tables evaluated effects of pre-pulse intensities [69, 80, or 90 dB(A)] upon the auditory startle response, using 10 kHz and white noise stimulation, respectively. In both cases, higher intensity pre-pulse intensities reduced the response to subsequent challenge, with clear dose-response. The final table varied the signal durations from 20 to 40 milliseconds, which duration had no apparent impact on results. Useful control data. Aldous, June 4, 2014.

142-0258 276140 Andrus, A. K., and R. M. Golden, [validation study for FOB], “R. M. Golden: Proficiency demonstration in conduction of the functional observational battery,” Dow Chemical Company, Midland, MI, 3/29/07. Andrus served as FOB Trainer and Golden as FOB Observer (blind to treatment). Chlorpromazine, amphetamine, and atropine plus physostigmine were administered in effective dose levels. Observations were close to expectation, as follows. Chlorpromazine was associated with splayed hindlimbs, fixed body position, minimal resistance to movement, palpebral closure, very relaxed muscle tone, reduced extensor-thrust response, minimal reactivity to handling, low level of activity, minimal or no responsiveness to touch, slight incoordination, reduced body temperature, reduced hindlimb grip, and greatly increased landing foot splay. Common amphetamine findings were piloerection, repetitive behaviors (mainly sniffing), pronounced resistance to removal, slight pupil dilation, enhanced salivation, rigid muscle tone, pronounced extensor-thrust response, pronounced reactivity to handling, high level of activity, pronounced reaction to sharp noise, pronounced reactivity to touch, little or no responsiveness to tail pinch, and elevated body temperature. Atropine plus physostigmine elicited tremors, fixed body position, completely dilated pupils, non-reactive pupils, very relaxed muscle tone, minimal extensor-thrust response, minimal reactivity to handling, low level of activity, pronounced reaction to sharp noise, no reactivity to touch, no responsiveness to tail
pinch, slight incoordination, reduced body temperature, slightly reduced hindlimb grip, reduced forelimb grip, and slightly increased landing foot splay. Findings are close to expectation, and indicate effective observation by the technician. Aldous, June 3, 2014.

142-0258 276141 Yano, B. L., C. L. Zablotny, and J. L. VanFleet, “Morphometric brain differences between control and methimazole-treated postnatal day 22 and 60 CD rats – a positive control study,” Dow Chemical Company, Midland, MI, July 1, 2004. Methimazole was expected to perturb some aspects of brain growth and differentiation in maturing rats. Females were dosed in drinking water at intended dose levels of 0 or 0.1 mg/kg/day methimazole from gestation day 6 through lactation day 21. Body weights, brain weights, and brain morphometric measurements were taken at PND 22 and 60. Terminal body weights of offspring were reduced 40-45% at PND 22, and 17-19% at PND 60. Brain weights were reduced by 4% in PND 22 males and females, and by 4% and 7% in PND 60 males and females, respectively. Cerebrum length was reduced in methimazole pups by 5-7% at PND 22 and by 1% (M) and 5% (F) at PND 60. Cerebellar width was typically reduced in treated offspring by about 3%. Other remarkable changes observed were reductions in hippocampal height of 13% at PND 60 in both sexes and reductions of 10% and 9% in cerebellum lobule thickness at PND 60. Thalamic height and width were remarkable reduced, particularly at PND 60. These changes attest to the ability of the investigators to document brain morphometric changes. Aldous, June 4, 2014.

142-0258 276142 Yano, B. L., “Neuropathology proficiency demonstration study using acrylamide and trimethyltin in the Fischer 344 rat,” Dow Chemical Company, Midland, MI, 1993. Male rats were dosed by gavage with 7 mg/kg trimethyltin on day 1, or repeatedly by gavage with 35 mg/kg/day acrylamide (5 times/week for 3 weeks), or with distilled water by gavage (5 times/week for 3 weeks), with sacrifice on day 21 in all cases. Rats were perfused at termination. Peripheral nerve tissues were embedded in plastic prior to sectioning and staining with toluidine blue. CNS (nine transverse sections) and other tissues were embedded in paraffin, sectioned, and stained with H&E and other stains. Acrylamide was associated with cerebellar Purkinje cell degeneration (very slight), and peripheral nerve degeneration (peroneal, sural, and tibial: in most cases very slight to slight degree). Trimethyltin elicited multifocal degeneration of the hippocampus (typically moderate degree), and gliosis of the piriform cortex (very slight). Very slight degeneration of lumbar nerve fibers was observed in all 5 trimethyltin rats, but not in controls. Some individual nerve fibers of proximal sciatic and peroneal nerves showed very slight degeneration following trimethyltin treatment: this was considered to be possibly treatment-related, although not commonly observed with trimethyltin. Data indicate proficiency in neurohistopathology evaluation. Aldous, June 4, 2014.

IMMUNOTOXICITY ** (addressed in Record No. 253049, found under reproductive toxicity, rat)

NOTE: There is no stand-alone developmental neurotoxicity study, however Record No. 253049, which was a complex study design, involved treatments of parental rats for 4 weeks pre-treatment, through gestation and lactation, with treatments continuing in offspring until they were of age for particular evaluations. That study incorporated a functional SRBC antibody forming cell assay and a functional natural killer cell assay. Both were negative. These address the Tier 1 immunotoxicity requirements. Aldous, 5/22/14.
ENDOCRINE DISRUPTOR STUDIES
There is no study of this type on file.

SUPPLEMENTAL STUDIES
There is no study of this type on file.

U.S. EPA REVIEWS CROSS-REFERENCED TO DPR RECORD NUMBERS

Contents of the following brief reports in Document No. 142-177 were summarized without formal analysis by C. Aldous on 1/15/99.

142-177 156542 U.S. EPA tabular summary of major FIFRA studies and results.

142-177 156544 U.S. EPA DER’s of recent male and female mouse oncogenicity studies: Male mouse oncogenicity study is Record No. 143336 = EPA MRID No. 43879801. Female mouse oncogenicity study is Record No. 137060 = EPA MRID No. 43597201.

142-177 156546 U.S. EPA “Carcinogenicity Peer Review” for 2,4-D, dated 1/29/97. (Conclusion: continue to classify as Group D - not classifiable as to human carcinogenicity). This document is of possible value for risk assessment, since it reviews actions of U.S. EPA.

142-177 156547 U.S. EPA RfD/Peer Review Report of 2,4-D (May 9, 1996). This record evaluated the usefulness of the major FIFRA studies for setting RfD values. This report settled on using the NOEL of 1 mg/kg/day from the dog study (DPR Record No. 127497 = EPA MRID No. 43049001: Hazleton 1993 study). Using an uncertainty factor of 100, the RfD was calculated to be 0.01 mg/kg/day.

142-177 156548 U.S. EPA “Toxicology Endpoint Selection Document.” Document discusses various durations of potential exposure to 2,4-D, and proposes corresponding NOEL’s. The dog study (see Record No. 156547) continues to be the basis of the RfD.